The impact of the hydroxymethylcytosine epigenetic signature on DNA structure and function

dc.contributor.authorBattistini, Federica
dc.contributor.authorDans, Pablo D.
dc.contributor.authorTerrazas Martínez, Montserrat
dc.contributor.authorCastellazzi, Chiara L.
dc.contributor.authorPortella, Guillem
dc.contributor.authorLabrador, Mireia
dc.contributor.authorVillegas, Núria
dc.contributor.authorBrun Heath, Isabelle
dc.contributor.authorGonzález, Carlos
dc.contributor.authorOrozco López, Modesto
dc.date.accessioned2022-07-04T15:48:51Z
dc.date.available2022-07-04T15:48:51Z
dc.date.issued2021-11-08
dc.date.updated2022-07-04T15:48:51Z
dc.description.abstractWe present a comprehensive, experimental and theoretical study of the impact of 5-hydroxymethylation of DNA cytosine. Using molecular dynamics, biophysical experiments and NMR spectroscopy, we found that Ten-Eleven translocation (TET) dioxygenases generate an epigenetic variant with structural and physical properties similar to those of 5-methylcytosine. Experiments and simulations demonstrate that 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC) generally lead to stiffer DNA than normal cytosine, with poorer circularization efficiencies and lower ability to form nucleosomes. In particular, we can rule out the hypothesis that hydroxymethylation reverts to unmodified cytosine physical properties, as hmC is even more rigid than mC. Thus, we do not expect dramatic changes in the chromatin structure induced by differences in physical properties between d(mCpG) and d(hmCpG). Conversely, our simulations suggest that methylated-DNA binding domains (MBDs), associated with repression activities, are sensitive to the substitution d(mCpG) ➔ d(hmCpG), while MBD3 which has a dual activation/repression activity is not sensitive to the d(mCpG) d(hmCpG) change. Overall, while gene activity changes due to cytosine methylation are the result of the combination of stiffness-related chromatin reorganization and MBD binding, those associated to 5-hydroxylation of methylcytosine could be explained by a change in the balance of repression/activation pathways related to differential MBD binding.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec721677
dc.identifier.issn1553-734X
dc.identifier.urihttps://hdl.handle.net/2445/187248
dc.language.isoeng
dc.publisherPublic Library of Science (PLoS)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1371/journal.pcbi.1009547
dc.relation.ispartofPLoS Computational Biology, 2021, vol. 17, num. 11, p. e1009547
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/823830/EU//BioExcel-2
dc.relation.urihttps://doi.org/10.1371/journal.pcbi.1009547
dc.rightscc-by (c) Battistini, Federica et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Química Inorgànica i Orgànica)
dc.subject.classificationEpigenètica
dc.subject.classificationADN
dc.subject.classificationTranslocació (Genètica)
dc.subject.otherEpigenetics
dc.subject.otherDNA
dc.subject.otherTranslocation (Genetics)
dc.titleThe impact of the hydroxymethylcytosine epigenetic signature on DNA structure and function
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
721677.pdf
Mida:
2.37 MB
Format:
Adobe Portable Document Format