Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Marta Abadı́as Morales, 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/183058

Principi d’equivalència d’ingressos en subhastes de valoració privada

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] Throughout this project, we discuss the key topics of the Auction Theory, focusing on the classic auctions in which there is a competitive bidding process for a single, unique object amongst a group of bidders with private values. Mainly, we will focus on the first and second price sealed-bid auction formats. We will see that the studied auctions can be considered as bayesian games or games with incomplete information. Hence, our main goal during this paper will be to find an optimal strategy for the bidders (who we assume are rational) in each case, which will be the Nash equilibrium. Once they are determined, we will observe that, despite being very different, the expected revenue of the seller is the same under both formats, even when the seller sets a reserve price. The main result that we find is the Revenue equivalence principle. This proves that, under certain premises, the fact that the expected revenue turns out to be equal can be attributable to an entire family of auctions types. Finally, we will study what happens when the premises of the Revenue equivalence principle are relaxed. As such, we will see the consequences that can be derived when the bidders are risk averse, when they have budget constraints and when there are asymmetries between them.

Descripció

Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Xavier Jarque i Ribera

Citació

Citació

ABADÍAS MORALES, Marta. Principi d’equivalència d’ingressos en subhastes de valoració privada. [consulta: 24 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/183058]

Exportar metadades

JSON - METS

Compartir registre