Complex nonlinear neural network prediction with IOWA layer

dc.contributor.authorHussain, Walayat
dc.contributor.authorMerigó Lindahl, José M.
dc.contributor.authorGil Lafuente, Jaime
dc.contributor.authorGao, Honghao
dc.date.accessioned2023-05-10T16:32:06Z
dc.date.available2023-05-10T16:32:06Z
dc.date.issued2023-04-01
dc.date.updated2023-05-10T16:32:06Z
dc.description.abstractNeural network methods are widely used in business problems for prediction, clustering, and risk management to improving customer satisfaction and business outcome. The ability of a neural network to learn complex nonlinear relationship is due to its architecture that uses weight parameters to transform input data within the hidden layers. Such methods perform well in many situations where the ordering of inputs is simple. However, for a complex reordering of a decision-maker, the process is not enough to get an optimal prediction result (...)
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec732262
dc.identifier.issn1432-7643
dc.identifier.urihttps://hdl.handle.net/2445/197788
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s00500-023-07899-2
dc.relation.ispartofSoft Computing, 2023, vol. 27, p. 4852-4863
dc.relation.urihttps://doi.org/10.1007/s00500-023-07899-2
dc.rights(c) Springer Verlag, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Empresa)
dc.subject.classificationTeoria de la predicció
dc.subject.classificationPrevisió econòmica
dc.subject.classificationTeoria d'operadors
dc.subject.classificationPresa de decisions
dc.subject.otherPrediction theory
dc.subject.otherEconomic forecasting
dc.subject.otherOperator theory
dc.subject.otherDecision making
dc.titleComplex nonlinear neural network prediction with IOWA layer
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
732262.pdf
Mida:
784.46 KB
Format:
Adobe Portable Document Format