Global efficency

dc.contributor.authorCorcuera Valverde, José Manuel
dc.contributor.authorOller i Sala, Josep Maria
dc.date.accessioned2020-03-05T13:55:53Z
dc.date.available2020-03-05T13:55:53Z
dc.date.issued1996
dc.descriptionPreprint enviat per a la seva publicació en una revista científica.ca
dc.description.abstractIn this paper the global behaviour of an estimator is studied in framework of Intrinsic Analysis, (7). Two indices of performance of an estimator in a bounded region are analyzed: the average of the intrinsic risk (the loss function is the squared Rao distance) and the maximum risk. The Riemannian volume, provided by the Fisher metric on the manifold associated with the parametric model, allows us to take an average of the intrinsic risk. Cramér-Rao type integral inequalities for the integrated mean squared Rao distance of estimators are derived using variational methods, extending the work of éencov, [3]. Additionally, lower bounds for the maximum risk are also derived, by using integral expressions.ca
dc.format.extent23 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/152097
dc.language.isoengca
dc.publisherUniversitat de Barcelonaca
dc.relation.isformatofReproducció digital del document original en paper [CRAI Biblioteca de Matemàtiques i Informàtica - Dipòsit Departament CAIXA 37.6]
dc.relation.ispartofseriesMathematics Preprint Series; 211ca
dc.rights(c) J. M. Corcuera et al., 1996
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.sourcePreprints de Matemàtiques - Mathematics Preprint Series
dc.subject.classificationDistribució (Teoria de la probabilitat)
dc.subject.classificationAnàlisi asimptòtica
dc.subject.classificationGeometria diferencial
dc.subject.classificationEstadística matemàtica
dc.subject.otherUniversitat de Barcelona. Institut de Matemàtica
dc.titleGlobal efficencyca
dc.typeinfo:eu-repo/semantics/articleca
dc.typeinfo:eu-repo/semantics/submittedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
MPS_N211.pdf
Mida:
944.47 KB
Format:
Adobe Portable Document Format
Descripció: