Plectic $p$-adic invariants
| dc.contributor.author | Fornea, Michele | |
| dc.contributor.author | Guitart Morales, Xavier | |
| dc.contributor.author | Masdeu, Marc | |
| dc.date.accessioned | 2023-02-13T16:58:29Z | |
| dc.date.available | 2024-09-17T05:10:07Z | |
| dc.date.issued | 2022-09-17 | |
| dc.date.updated | 2023-02-13T16:58:29Z | |
| dc.description.abstract | For modular elliptic curves over number fields of narrow class number one, and with multiplicative reduction at a collection of $p$-adic primes, we define new $p$-adic invariants. Inspired by Nekováŕ and Scholl's plectic conjectures, we believe these invariants control the Mordell-Weil group of higher rank elliptic curves and we support our expectations with numerical experiments. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 728112 | |
| dc.identifier.issn | 0001-8708 | |
| dc.identifier.uri | https://hdl.handle.net/2445/193534 | |
| dc.language.iso | eng | |
| dc.publisher | Elsevier B.V. | |
| dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1016/j.aim.2022.108484 | |
| dc.relation.ispartof | Advances in Mathematics, 2022, vol. 406 | |
| dc.relation.uri | https://doi.org/10.1016/j.aim.2022.108484 | |
| dc.rights | cc-by-nc-nd (c) Elsevier B.V., 2022 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Teoria algebraica de nombres | |
| dc.subject.classification | Funcions L | |
| dc.subject.classification | Grups discontinus | |
| dc.subject.classification | Corbes el·líptiques | |
| dc.subject.other | Algebraic number theory | |
| dc.subject.other | L-functions | |
| dc.subject.other | Discontinuous groups | |
| dc.subject.other | Elliptic curves | |
| dc.title | Plectic $p$-adic invariants | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1