Geometric conditions for multiple sampling and interpolation in the Fock space

dc.contributor.authorBorichev, Alexander A.
dc.contributor.authorHartmann, Andreas
dc.contributor.authorKellay, Karim
dc.contributor.authorMassaneda Clares, Francesc Xavier
dc.date.accessioned2023-01-24T10:53:04Z
dc.date.available2023-01-24T10:53:04Z
dc.date.issued2017-01-02
dc.date.updated2023-01-24T10:53:04Z
dc.description.abstractWe study multiple sampling, interpolation and uniqueness for the classical Fock spaces in the case of unbounded multiplicities. We show that there are no sequences which are simultaneously sampling and interpolating when the multiplicities tend to infinity. This answers partially a question posed by Brekke and Seip.
dc.format.extent34 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec664889
dc.identifier.issn0001-8708
dc.identifier.urihttps://hdl.handle.net/2445/192550
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.aim.2016.09.019
dc.relation.ispartofAdvances in Mathematics, 2017, vol. 304, p. 1262-1295
dc.relation.urihttps://doi.org/10.1016/j.aim.2016.09.019
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationFuncions de variables complexes
dc.subject.classificationProblemes de moments (Matemàtica)
dc.subject.classificationInterpolació (Matemàtica)
dc.subject.classificationEspais de Hilbert
dc.subject.classificationOperadors lineals
dc.subject.otherFunctions of complex variables
dc.subject.otherMoment problems (Mathematics)
dc.subject.otherInterpolation
dc.subject.otherHilbert space
dc.subject.otherLinear operators
dc.titleGeometric conditions for multiple sampling and interpolation in the Fock space
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
664889.pdf
Mida:
305.14 KB
Format:
Adobe Portable Document Format