Asymptotic behaviour of the density in a parabolic SPDE

dc.contributor.authorKohatsu, Arturo
dc.contributor.authorMárquez, David (Márquez Carreras)
dc.contributor.authorSanz-Solé, Marta
dc.date.accessioned2024-11-21T08:30:30Z
dc.date.available2024-11-21T08:30:30Z
dc.date.issued2001-04
dc.date.updated2024-11-21T08:30:30Z
dc.description.abstractConsider the density of the solution $X(t, x)$ of a stochastic heat equation with small noise at a fixed $t \in[0, T], x \in[0,1]$. In this paper we study the asymptotics of this density as the noise vanishes. A kind of Taylor expansion in powers of the noise parameter is obtained. The coefficients and the residue of the expansion are explicitly calculated. In order to obtain this result some type of exponential estimates of tail probabilities of the difference between the approximating process and the limit one is proved. Also a suitable iterative local integration by parts formula is developed.
dc.format.extent35 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec181132
dc.identifier.issn0894-9840
dc.identifier.urihttps://hdl.handle.net/2445/216655
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofVersió postprint del document publicat a:
dc.relation.ispartofJournal of Theoretical Probability, 2001, vol. 14, num.2, p. 427-462
dc.rights(c) Springer Verlag, 2001
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationGrans desviacions
dc.subject.classificationCàlcul de Malliavin
dc.subject.classificationEquacions diferencials estocàstiques
dc.subject.classificationEquacions diferencials parabòliques
dc.subject.otherLarge deviations
dc.subject.otherMalliavin calculus
dc.subject.otherStochastic differential equations
dc.subject.otherParabolic differential equations
dc.titleAsymptotic behaviour of the density in a parabolic SPDE
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
68866.pdf
Mida:
367.58 KB
Format:
Adobe Portable Document Format