Coloración del plano: el problema de Hadwiger-Nelson

dc.contributor.advisorSoria de Diego, F. Javier
dc.contributor.authorBarril Pizarro, Sergio
dc.date.accessioned2020-01-24T08:50:01Z
dc.date.available2020-01-24T08:50:01Z
dc.date.issued2019-06-20
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: F. Javier Soria de Diegoca
dc.description.abstract[en] How many colors are needed in order to color the Euclidean plane in a way such that no two points at unit distance have the same color? This problem was first posed by Edward Nelson in 1950, and shortly after the first bounds were found: a lower bound of 4 and an upper bound of 7. These bounds were the best known for almost 70 years, until in April 2018 the biomedical gerontologist Aubrey de Grey shared a graph with 1585 vertices and 7909 edges of length 1, that could not be colored with 4 colors, thus improving the lower bound to 5. Besides looking for graphs with edges of length 1 that can’t be colored with 5 colors (which would further improve the lower bound to 6), one of the current goals is finding a smaller graph that can’t be 4-colored. To that end, two propositional logic tools have proven useful: SAT solvers and DRAT checkers. Currently, the smallest 5-chromatic graph found is due to Marijn Heule, with only 553 vertices. An improvement in both the number of vertices of the smallest 5-chromatic graph and the upper or lower bounds is still being actively pursued.ca
dc.format.extent65 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/148597
dc.language.isospaca
dc.rightscc-by-nc-nd (c) Sergio Barril Pizarro, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationTeoria de grafsca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationProgramarica
dc.subject.otherGraph theoryen
dc.subject.otherBachelor's theses
dc.subject.otherComputer softwareen
dc.titleColoración del plano: el problema de Hadwiger-Nelsonca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 3 de 3
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
119.04 KB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
5.25 MB
Format:
Adobe Portable Document Format
Descripció:
Carregant...
Miniatura
Nom:
UDGraphs_Windows_v_1.0.zip
Mida:
49.6 MB
Format:
ZIP file
Descripció:
UDGraphs Windows v. 1.0