Dynamics of the QR-flow for upper Hessenberg real matrices

dc.contributor.authorTatjer i Montaña, Joan Carles
dc.contributor.authorVieiro Yanes, Arturo
dc.date.accessioned2023-01-30T08:56:15Z
dc.date.available2023-01-30T08:56:15Z
dc.date.issued2021-03
dc.date.updated2023-01-30T08:56:15Z
dc.description.abstractWe investigate the main phase space properties of the QR-flow when restricted to upper Hessenberg matrices. A complete description of the linear behavior of the equilibrium matrices is given. The main result classifies the possible $\alpha$ - and $\omega$-limits of the orbits for this system. Furthermore, we characterize the set of initial matrices for which there is convergence towards an equilibrium matrix. Several numerical examples show the different limit behavior of the orbits and illustrate the theory.
dc.format.extent45 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec700197
dc.identifier.issn1531-3492
dc.identifier.urihttps://hdl.handle.net/2445/192780
dc.language.isoeng
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.3934/dcdsb.2020166
dc.relation.ispartofDiscrete and Continuous Dynamical Systems-Series B, 2021, vol. 26, num. 3, p. 1359-1403
dc.relation.urihttps://doi.org/10.3934/dcdsb.2020166
dc.rights(c) American Institute of Mathematical Sciences (AIMS), 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAnàlisi numèrica
dc.subject.classificationÀlgebra lineal
dc.subject.classificationMatrius (Matemàtica)
dc.subject.classificationSistemes dinàmics diferenciables
dc.subject.otherNumerical analysis
dc.subject.otherLinear algebra
dc.subject.otherMatrices
dc.subject.otherDifferentiable dynamical systems
dc.titleDynamics of the QR-flow for upper Hessenberg real matrices
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
700197.pdf
Mida:
2.62 MB
Format:
Adobe Portable Document Format