Predicting critical illness on initial diagnosis of COVID-19 based on easily obtained clinical variables: development and validation of the PRIORITY model

dc.contributor.authorMartínez Lacalzada, Miguel
dc.contributor.authorViteri Noël, Adrián
dc.contributor.authorManzano Espinosa, Luis
dc.contributor.authorFabregate, Martin
dc.contributor.authorRubio Rivas, Manuel
dc.contributor.authorLuis García, Sara
dc.contributor.authorArnalich Fernández, Francisco
dc.contributor.authorBeato Pérez, José Luis
dc.contributor.authorVargas Núñez, Juan Antonio
dc.contributor.authorCalvo, Elpidio
dc.contributor.authorEspiño Álvarez, Alexia Constanza
dc.contributor.authorFreire Castro, Santiago J.
dc.contributor.authorLoureiro Amigo, Jose
dc.contributor.authorPesqueira Fontán, Paula María
dc.contributor.authorPina, Adela
dc.contributor.authorÁlvarez Suárez, Ana María
dc.contributor.authorSilva Asiain, Andrea
dc.contributor.authorGarcía López, Beatriz
dc.contributor.authorLuque del Pino, Jairo
dc.contributor.authorSanz Cánovas, Jaime
dc.contributor.authorChazarra Pérez, Paloma
dc.contributor.authorGarcía García, Gema María
dc.contributor.authorNúñez Cortés, Jesús Millán
dc.contributor.authorCasas Rojo, José Manuel
dc.contributor.authorGómez Huelgas, Ricardo
dc.contributor.authorAbrego Vaca, Luis F.
dc.contributor.authorAndreu Arnanz, Ana
dc.contributor.authorArce García, Octavio A.
dc.contributor.authorBajo González, Marta
dc.contributor.authorBorque Sanz, Pablo
dc.contributor.authorCózar Llistó, Alberto
dc.contributor.authorHoyo Cuenda, Beatriz del
dc.contributor.authorGamboa Osorio, Alejandra
dc.contributor.authorGarcía Sánchez, Isabel
dc.contributor.authorLópez Cisneros, Óscar A.
dc.contributor.authorMerino Ortiz, Borja
dc.contributor.authorRiera González, Elisa
dc.contributor.authorRey García, Jimena
dc.contributor.authorSánchez Díaz, Cristina
dc.contributor.authorStarita Fajardo, Grisell
dc.contributor.authorSuárez Carantoña, Cecilia
dc.contributor.authorZhilina Zhilina, Svetlana
dc.contributor.authorSEMI-COVID-19 Network
dc.date.accessioned2021-12-16T18:03:02Z
dc.date.available2021-12-16T18:03:02Z
dc.date.issued2021-07-01
dc.date.updated2021-12-16T08:46:26Z
dc.description.abstractObjectives: We aimed to develop and validate a prediction model, based on clinical history and examination findings on initial diagnosis of coronavirus disease 2019 (COVID-19), to identify patients at risk of critical outcomes. Methods: We used data from the SEMI-COVID-19 Registry, a cohort of consecutive patients hospitalized for COVID-19 from 132 centres in Spain (23rd March to 21st May 2020). For the development cohort, tertiary referral hospitals were selected, while the validation cohort included smaller hospitals. The primary outcome was a composite of in-hospital death, mechanical ventilation, or admission to intensive care unit. Clinical signs and symptoms, demographics, and medical history ascertained at presentation were screened using least absolute shrinkage and selection operator, and logistic regression was used to construct the predictive model. Results: There were 10 433 patients, 7850 in the development cohort (primary outcome 25.1%, 1967/7850) and 2583 in the validation cohort (outcome 27.0%, 698/2583). The PRIORITY model included: age, dependency, cardiovascular disease, chronic kidney disease, dyspnoea, tachypnoea, confusion, systolic blood pressure, and SpO2 ≤93% or oxygen requirement. The model showed high discrimination for critical illness in both the development (C-statistic 0.823; 95% confidence interval (CI) 0.813, 0.834) and validation (C-statistic 0.794; 95%CI 0.775, 0.813) cohorts. A freely available web-based calculator was developed based on this model (https://www.evidencio.com/models/show/2344). Conclusions: The PRIORITY model, based on easily obtained clinical information, had good discrimination and generalizability for identifying COVID-19 patients at risk of critical outcomes.
dc.format.extent7 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn1469-0691
dc.identifier.pmid34274525
dc.identifier.urihttps://hdl.handle.net/2445/181831
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.cmi.2021.07.006
dc.relation.ispartofClinical Microbiology and Infection, 2021, vol. 27, num. 12, p. 1838-1844
dc.relation.urihttps://doi.org/10.1016/j.cmi.2021.07.006
dc.rightscc by-nc-nd (c) Martínez Lacalzada, Miguel et al, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationCOVID-19
dc.subject.classificationMedicina basada en l'evidència
dc.subject.otherCOVID-19
dc.subject.otherEvidence-based medicine
dc.titlePredicting critical illness on initial diagnosis of COVID-19 based on easily obtained clinical variables: development and validation of the PRIORITY model
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
PIIS1198743X21003803.pdf
Mida:
600 KB
Format:
Adobe Portable Document Format