A Gesture Recognition System for Detecting Behavioral Patterns of ADHD

dc.contributor.authorBautista Martín, Miguel Ángel
dc.contributor.authorHernández-Vela, Antonio
dc.contributor.authorEscalera Guerrero, Sergio
dc.contributor.authorIgual Muñoz, Laura
dc.contributor.authorPujol Vila, Oriol
dc.contributor.authorMoya, Josep
dc.contributor.authorViolant, Verónica
dc.contributor.authorAnguera Argilaga, María Teresa
dc.date.accessioned2018-01-24T11:58:12Z
dc.date.available2018-01-24T11:58:12Z
dc.date.issued2016-01
dc.date.updated2018-01-24T11:58:12Z
dc.description.abstractWe present an application of gesture recognition using an extension of dynamic time warping (DTW) to recognize behavioral patterns of attention deficit hyperactivity disorder (ADHD). We propose an extension of DTW using one-class classifiers in order to be able to encode the variability of a gesture category, and thus, perform an alignment between a gesture sample and a gesture class. We model the set of gesture samples of a certain gesture category using either Gaussian mixture models or an approximation of convex hulls. Thus, we add a theoretical contribution to classical warping path in DTW by including local modeling of intraclass gesture variability. This methodology is applied in a clinical context, detecting a group of ADHD behavioral patterns defined by experts in psychology/psychiatry, to provide support to clinicians in the diagnose procedure. The proposed methodology is tested on a novel multimodal dataset (RGB plus depth) of ADHD children recordings with behavioral patterns. We obtain satisfying results when compared to standard state-of-the-art approaches in the DTW context.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec645056
dc.identifier.issn2168-2267
dc.identifier.pmid26684256
dc.identifier.urihttps://hdl.handle.net/2445/119260
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1109/TCYB.2015.2396635
dc.relation.ispartofIEEE Transactions on Cybernetics, 2016, vol. 46, num. 1, p. 136 -147
dc.relation.urihttps://doi.org/10.1109/TCYB.2015.2396635
dc.rights(c) Institute of Electrical and Electronics Engineers (IEEE), 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationTrastorns per dèficit d'atenció amb hiperactivitat en els infants
dc.subject.classificationTrastorns per dèficit d'atenció en els infants
dc.subject.otherAttention deficit disorder with hyperactivity in children
dc.subject.otherAttention-deficit-disordered children
dc.titleA Gesture Recognition System for Detecting Behavioral Patterns of ADHD
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
645056.pdf
Mida:
2.02 MB
Format:
Adobe Portable Document Format