Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier B.V., 2018
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/120997

On the data-driven COS method

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

In this paper, we present the data-driven COS method, ddCOS. It is a Fourier-based financial option valuation method which assumes the availability of asset data samples: a characteristic function of the underlying asset probability density function is not required. As such, the presented technique represents a generalization of the well-known COS method [1]. The convergence of the proposed method is in line with Monte Carlo methods for pricing financial derivatives. The ddCOS method is then particularly interesting for density recovery and also for the efficient computation of the option's sensitivities Delta and Gamma. These are often used in risk management, and can be obtained at a higher accuracy with ddCOS than with plain Monte Carlo methods.

Citació

Citació

LEITAO, Alvaro, OOSTERLEE, C. w. (cornelis w.), ORTIZ GRACIA, Luis, BOHTE, Sander m.. On the data-driven COS method. _Applied Mathematics and Computation_. 2018. Vol. 317, núm. January, pàgs. 68-84. [consulta: 24 de gener de 2026]. ISSN: 0096-3003. [Disponible a: https://hdl.handle.net/2445/120997]

Exportar metadades

JSON - METS

Compartir registre