Allele balance bias identifies systematic genotyping errors and false disease associations

dc.contributor.authorMuyas, Francesc
dc.contributor.authorBosio, Mattia
dc.contributor.authorPuig, Anna
dc.contributor.authorSusak, Hana
dc.contributor.authorDomènech, Laura
dc.contributor.authorEscaramís Babiano, Geòrgia
dc.contributor.authorZapata, Luis
dc.contributor.authorDemidov, German
dc.contributor.authorEstivill, Xavier, 1955-
dc.contributor.authorRabionet Janssen, Raquel
dc.contributor.authorOssowski, Stephan
dc.date.accessioned2019-09-27T15:23:19Z
dc.date.available2019-10-24T05:10:19Z
dc.date.issued2018-10-24
dc.date.updated2019-09-27T15:23:20Z
dc.description.abstractIn recent years, next‐generation sequencing (NGS) has become a cornerstone of clinical genetics and diagnostics. Many clinical applications require high precision, especially if rare events such as somatic mutations in cancer or genetic variants causing rare diseases need to be identified. Although random sequencing errors can be modeled statistically and deep sequencing minimizes their impact, systematic errors remain a problem even at high depth of coverage. Understanding their source is crucial to increase precision of clinical NGS applications. In this work, we studied the relation between recurrent biases in allele balance (AB), systematic errors, and false positive variant calls across a large cohort of human samples analyzed by whole exome sequencing (WES). We have modeled the AB distribution for biallelic genotypes in 987 WES samples in order to identify positions recurrently deviating significantly from the expectation, a phenomenon we termed allele balance bias (ABB). Furthermore, we have developed a genotype callability score based on ABB for all positions of the human exome, which detects false positive variant calls that passed state‐of‐the‐art filters. Finally, we demonstrate the use of ABB for detection of false associations proposed by rare variant association studies. Availability: https://github.com/Francesc-Muyas/ABB.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec686308
dc.identifier.issn1059-7794
dc.identifier.pmid30353964
dc.identifier.urihttps://hdl.handle.net/2445/141108
dc.language.isoeng
dc.publisherWiley
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1002/humu.23674
dc.relation.ispartofHuman Mutation, 2018, vol. 40, num. 1, p. 115-116
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/635290/EU//PanCanRisk
dc.relation.urihttps://doi.org/10.1002/humu.23674
dc.rights(c) Wiley, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Genètica, Microbiologia i Estadística)
dc.subject.classificationBiologia computacional
dc.subject.classificationGenètica
dc.subject.otherComputational biology
dc.subject.otherGenetics
dc.titleAllele balance bias identifies systematic genotyping errors and false disease associations
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
686308.pdf
Mida:
1.26 MB
Format:
Adobe Portable Document Format