Comparison of linear, generalized additive models and machine learning algorithms for spatial climate interpolation

dc.contributor.authorBonsoms, Josep
dc.contributor.authorNinyerola i Casals, Miquel
dc.date.accessioned2025-01-02T18:01:16Z
dc.date.available2025-01-02T18:01:16Z
dc.date.issued2024-03-01
dc.date.updated2025-01-02T18:01:16Z
dc.description.abstractGeospatial atmospheric data is the input variable of a wide range of hydrological and ecological spatial models, many of which are oriented towards improving the socioeconomic and environmental sustainability. Here, we provide an evaluation of machine learning (ML) methods for the spatial interpolation of annual precipitation, minimum and maximum temperatures for a mountain range, in this case, the Pyrenees. To this end, this work compares the performance and accuracy of multiple linear regressions (MLR) and generalized additive models (GAM) against fve ML methods (K-Nearest Neighbors, Supported Vector Machines, Neural Networks, Stochastic Gradient Boosting and Random Forest). The ML algorithms outperformed the MLR and GAM independently of the predictor variables used, the geographical sector analyzed or the elevation range. Overall, the diferences between ML algorithms are negligible. Random Forest shows a slightly higher than average accuracy for the spatial interpolation of precipitation (R2=0.93; MAE=70.44 mm), whereas Stochastic Gradient Boosting is the best ML method for the spatial interpolation of the mean maximum annual temperature (R2=0.96, MAE=0.43 ºC). Stochastic Gradient Boosting, Neural Networks and Random Forest have similar performances for the spatial interpolation of the mean minimum annual temperature (R2=0.98, MAE=0.19 ºC). Results presented here can be valuable for the past and future climate spatial analysis, environmental niche modelling, hydrological projections, and water management.
dc.format.extent16 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn0177-798X
dc.identifier.urihttps://hdl.handle.net/2445/217262
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s00704-023-04725-5
dc.relation.ispartofTheoretical and Applied Climatology, 2024, vol. 155, num.3, p. 1777-1792
dc.relation.urihttps://doi.org/10.1007/s00704-023-04725-5
dc.rightscc-by (c) Bonsoms, Josep et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Geografia)
dc.subject.classificationClimatologia
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationAtmosfera
dc.subject.otherClimatology
dc.subject.otherMachine learning
dc.subject.otherAtmosphere
dc.titleComparison of linear, generalized additive models and machine learning algorithms for spatial climate interpolation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
870475.pdf
Mida:
2.47 MB
Format:
Adobe Portable Document Format