Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/187249
Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Catalytic-materials design requires predictive modeling of the interaction between catalyst and reactants. This is challenging due to the complexity and diversity of structure-property relationships across the chemical space. Here, we report a strategy for a rational design of catalytic materials using the artificial intelligence approach (AI) subgroup discovery. We identify catalyst genes (features) that correlate with mechanisms that trigger, facilitate, or hinder the activation of carbon dioxide (CO2) towards a chemical conversion. The AI model is trained on first-principles data for a broad family of oxides. We demonstrate that surfaces of experimentally identified good catalysts consistently exhibit combinations of genes resulting in a strong elongation of a C-O bond. The same combinations of genes also minimize the OCO-angle, the previously proposed indicator of activation, albeit under the constraint that the Sabatier principle is satisfied. Based on these findings, we propose a set of new promising catalyst materials for CO2 conversion.
Matèries (anglès)
Citació
Citació
MAZHEIKA, Aliaksei, WANG, Yang-gang, VALERO MONTERO, Rosendo, VIÑES SOLANA, Francesc, ILLAS I RIERA, Francesc, GHIRINGELLI, Luca m., LEVCHENKO, Sergey v., SCHEFFLER, Matthias. Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides. _Nature Communications_. 2022. Vol. 13, núm. 419. [consulta: 24 de gener de 2026]. ISSN: 2041-1723. [Disponible a: https://hdl.handle.net/2445/187249]