Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides

dc.contributor.authorMazheika, Aliaksei
dc.contributor.authorWang, Yang-Gang
dc.contributor.authorValero Montero, Rosendo
dc.contributor.authorViñes Solana, Francesc
dc.contributor.authorIllas i Riera, Francesc
dc.contributor.authorGhiringelli, Luca M.
dc.contributor.authorLevchenko, Sergey V.
dc.contributor.authorScheffler, Matthias
dc.date.accessioned2022-07-04T16:41:47Z
dc.date.available2022-07-04T16:41:47Z
dc.date.issued2022-01-20
dc.date.updated2022-07-04T16:41:47Z
dc.description.abstractCatalytic-materials design requires predictive modeling of the interaction between catalyst and reactants. This is challenging due to the complexity and diversity of structure-property relationships across the chemical space. Here, we report a strategy for a rational design of catalytic materials using the artificial intelligence approach (AI) subgroup discovery. We identify catalyst genes (features) that correlate with mechanisms that trigger, facilitate, or hinder the activation of carbon dioxide (CO2) towards a chemical conversion. The AI model is trained on first-principles data for a broad family of oxides. We demonstrate that surfaces of experimentally identified good catalysts consistently exhibit combinations of genes resulting in a strong elongation of a C-O bond. The same combinations of genes also minimize the OCO-angle, the previously proposed indicator of activation, albeit under the constraint that the Sabatier principle is satisfied. Based on these findings, we propose a set of new promising catalyst materials for CO2 conversion.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec722009
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/2445/187249
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41467-022-28042-z
dc.relation.ispartofNature Communications, 2022, vol. 13, p. 419
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/676580/EU//NoMaD
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/740233/EU//TEC1p
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/951786/EU//NOMAD CoE
dc.relation.urihttps://doi.org/10.1038/s41467-022-28042-z
dc.rightscc-by (c) Mazheika, Aliaksei et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationEspectroscòpia infraroja
dc.subject.classificationNanopartícules
dc.subject.classificationTeoria del funcional de densitat
dc.subject.otherInfrared spectroscopy
dc.subject.otherNanoparticles
dc.subject.otherDensity functionals
dc.titleArtificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
722009.pdf
Mida:
1011.02 KB
Format:
Adobe Portable Document Format