Functionalized surfaces with tailored wettability determine Influenza A infectivity

dc.contributor.authorMannelli, Ilaria
dc.contributor.authorReigada Sanz, Ramon
dc.contributor.authorSuárez, Irina
dc.contributor.authorJanner, Davide
dc.contributor.authorCarrilero, Albert
dc.contributor.authorMazumder, Prantik
dc.contributor.authorSagués i Mestre, Francesc
dc.contributor.authorPruneri, Valerio
dc.contributor.authorLakadamyali, Melike
dc.date.accessioned2016-09-09T12:38:40Z
dc.date.available2017-05-31T22:01:17Z
dc.date.issued2016-05-31
dc.date.updated2016-09-09T12:38:45Z
dc.description.abstractSurfaces contaminated with pathogenic microorganisms contribute to their transmission and spreading. The development of 'active surfaces' that can reduce or eliminate this contamination necessitates a detailed understanding of the molecular mechanisms of interactions between the surfaces and the microorganisms. Few studies have shown that, among the different surface characteristics, the wetting properties play an important role in reducing virus infectivity. Here, we systematically tailored the wetting characteristics of flat and nanostructured glass surfaces by functionalizing them with alkyl- and fluoro-silanes. We studied the effects of these functionalized surfaces on the infectivity of Influenza A viruses using a number of experimental and computational methods including real-time fluorescence microscopy and molecular dynamics simulations. Overall, we show that surfaces that are simultaneously hydrophobic and oleophilic are more efficient in deactivating enveloped viruses. Our results suggest that the deactivation mechanism likely involves disruption of the viral membrane upon its contact with the alkyl chains. Moreover, enhancing these specific wetting characteristics by surface nanostructuring led to an increased deactivation of viruses. These combined features make these substrates highly promising for applications in hospitals and similar infrastructures where antiviral surfaces can be crucial.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec663764
dc.identifier.issn1944-8244
dc.identifier.urihttps://hdl.handle.net/2445/101694
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1021/acsami.6b02779
dc.relation.ispartofACS Applied Materials & Interfaces, 2016, vol. 8, num. 24, p. 15058-15066
dc.relation.urihttp://dx.doi.org/10.1021/acsami.6b02779
dc.rights(c) American Chemical Society , 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationGrip aviària
dc.subject.classificationSuperfícies hidrofòbiques
dc.subject.classificationMicroscòpia de fluorescència
dc.subject.classificationMaterials nanoestructurats
dc.subject.classificationDinàmica molecular
dc.subject.otherAvian influenza
dc.subject.otherHydrophobic surfaces
dc.subject.otherFluorescence microscopy
dc.subject.otherNanostructured materials
dc.subject.otherMolecular dynamics
dc.titleFunctionalized surfaces with tailored wettability determine Influenza A infectivity
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
663764.pdf
Mida:
2.4 MB
Format:
Adobe Portable Document Format