El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 
Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/213453

Neural Stochastic Differential Equations for conditional time series generation using the signature Wasserstein -1 metric

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

(Conditional) generative adversarial networks (GANs) have had great success in recent years, due to their ability to approximate (conditional) distributions over extremely high-dimensional spaces. However, they are highly unstable and computationally expensive to train, especially in the time series setting. Recently, the use of a key object in rough path theory, called the signature of a path, has been proposed. This is able to convert the min–max formulation given by the (conditional) GAN framework into a classical minimization problem. However, this method is extremely costly in terms of memory, which can sometimes become prohibitive. To overcome this, we propose the use of conditional neural stochastic differential equations, designed to have a constant memory cost as a function of depth, being more memory efficient than traditional deep learning architectures. We empirically test the efficiency of our proposed model against other classical approaches, in terms of both memory cost and computational time, and show that it usually outperforms them according to several metrics.

Citació

Citació

DÍAZ, Pere, LOZANO, Toni, VIVES I SANTA EULÀLIA, Josep. Neural Stochastic Differential Equations for conditional time series generation using the signature Wasserstein -1 metric. _Journal Of Computational Finance_. 2023. Vol. 27, núm. 1, pàgs. 1-23. [consulta: 8 de gener de 2026]. ISSN: 1460-1559. [Disponible a: https://hdl.handle.net/2445/213453]

Exportar metadades

JSON - METS

Compartir registre