Neural Stochastic Differential Equations for conditional time series generation using the signature Wasserstein -1 metric

dc.contributor.authorDíaz, Pere
dc.contributor.authorLozano, Toni
dc.contributor.authorVives i Santa Eulàlia, Josep, 1963-
dc.date.accessioned2024-06-21T11:49:20Z
dc.date.available2024-08-09T05:10:11Z
dc.date.issued2023-08-10
dc.date.updated2024-06-21T11:49:25Z
dc.description.abstract(Conditional) generative adversarial networks (GANs) have had great success in recent years, due to their ability to approximate (conditional) distributions over extremely high-dimensional spaces. However, they are highly unstable and computationally expensive to train, especially in the time series setting. Recently, the use of a key object in rough path theory, called the signature of a path, has been proposed. This is able to convert the min–max formulation given by the (conditional) GAN framework into a classical minimization problem. However, this method is extremely costly in terms of memory, which can sometimes become prohibitive. To overcome this, we propose the use of conditional neural stochastic differential equations, designed to have a constant memory cost as a function of depth, being more memory efficient than traditional deep learning architectures. We empirically test the efficiency of our proposed model against other classical approaches, in terms of both memory cost and computational time, and show that it usually outperforms them according to several metrics.
dc.format.extent23 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec745652
dc.identifier.issn1460-1559
dc.identifier.urihttps://hdl.handle.net/2445/213453
dc.language.isoeng
dc.publisherInfopro Digital
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.21314/JCF.2023.005
dc.relation.ispartofJournal Of Computational Finance, 2023, vol. 27, num.1, p. 1-23
dc.relation.urihttps://doi.org/10.21314/JCF.2023.005
dc.rights(c) Infopro Digital, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtica Econòmica, Financera i Actuarial)
dc.subject.classificationAnàlisi de sèries temporals
dc.subject.classificationNeurociència computacional
dc.subject.classificationEquacions diferencials
dc.subject.otherTime-series analysis
dc.subject.otherComputational neuroscience
dc.subject.otherDifferential equations
dc.titleNeural Stochastic Differential Equations for conditional time series generation using the signature Wasserstein -1 metric
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
851646.pdf
Mida:
1.18 MB
Format:
Adobe Portable Document Format