Enhancing mortality prediction in patients with spontaneous intracerebral hemorrhage: Radiomics and supervised machine learning on non-contrast computed tomography

dc.contributor.authorLópez Rueda, Antonio
dc.contributor.authorRodríguez Sánchez, María Ángeles
dc.contributor.authorSerrano, Elena
dc.contributor.authorMoreno, Javier
dc.contributor.authorRodríguez, Alejandro
dc.contributor.authorLlull, Laura
dc.contributor.authorAmaro, Sergio
dc.contributor.authorOleaga Zufiría, Laura
dc.date.accessioned2025-03-25T13:06:09Z
dc.date.available2025-03-25T13:06:09Z
dc.date.issued2024-12-01
dc.date.updated2025-01-23T09:56:16Z
dc.description.abstractPurpose: This study aims to develop a Radiomics-based Supervised Machine-Learning model to predict mortality in patients with spontaneous intracerebral hemorrhage (sICH). Methods: Retrospective analysis of a prospectively collected clinical registry of patients with sICH consecutively admitted at a single academic comprehensive stroke center between January-2016 and April-2018. We conducted an in-depth analysis of 105 radiomic features extracted from 105 patients. Following the identification and handling of missing values, radiomics values were scaled to 0-1 to train different classifiers. The sample was split into 80-20 % training-test and validation cohort in a stratified fashion. Random Forest(RF), K-Nearest Neighbor(KNN), and Support Vector Machine(SVM) classifiers were evaluated, along with several feature selection methods and hyperparameter optimization strategies, to classify the binary outcome of mortality or survival during hospital admission. A tenfold stratified cross-validation method was used to train the models, and average metrics were calculated. Results: RF, KNN, and SVM, with the DropOut+SelectKBest feature selection strategy and no hyperparameter optimization, demonstrated the best performances with the least number of radiomic features and the most simplified models, achieving a sensitivity range between 0.90 and 0.95 and AUC range from 0.97 to 1 on the validation dataset. Regarding the confusion matrix, the SVM model did not predict any false negative test (negative predicted value 1). Conclusion: Radiomics-based Supervised Machine Learning models can predict mortality during admission in patients with sICH. SVM with the DropOut+SelectKBest feature selection strategy and no hyperparameter optimization was the best simplified model to detect mortality during admission in patients with sICH.
dc.format.extent7 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn2352-0477
dc.identifier.pmid39687913
dc.identifier.urihttps://hdl.handle.net/2445/219994
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.ejro.2024.100618
dc.relation.ispartofEuropean Journal of Radiology Open, 2024, vol. 13
dc.relation.urihttps://doi.org/10.1016/j.ejro.2024.100618
dc.rightscc-by-nc-nd (c) López Rueda, Antonio et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationHemorràgia cerebral
dc.subject.classificationTomografia
dc.subject.otherMachine learning
dc.subject.otherCerebral hemorrhage
dc.subject.otherTomography
dc.titleEnhancing mortality prediction in patients with spontaneous intracerebral hemorrhage: Radiomics and supervised machine learning on non-contrast computed tomography
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
PIIS235204772400073X.pdf
Mida:
3.92 MB
Format:
Adobe Portable Document Format