Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/119123
Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for Human Gesture Recognition in RGB-D
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We present a methodology to address the problem of human gesture segmentation and recognition in video and depth image sequences. A Bag-of-Visual-and-Depth-Words (BoVDW) model is introduced as an extension of the Bag-of-Visual-Words (BoVW) model. State-of-the-art RGB and depth features, including a newly proposed depth descriptor, are analysed and combined in a late fusion form. The method is integrated in a Human Gesture Recognition pipeline, together with a novel probability-based Dynamic Time Warping (PDTW) algorithm which is used to perform prior segmentation of idle gestures. The proposed DTW variant uses samples of the same gesture category to build a Gaussian Mixture Model driven probabilistic model of that gesture class. Results of the whole Human Gesture Recognition pipeline in a public data set show better performance in comparison to both standard BoVW model and DTW approach.
Matèries (anglès)
Citació
Citació
HERNÁNDEZ-VELA, Antonio, BAUTISTA MARTÍN, Miguel ángel, PEREZ-SALA, Xavier, PONCE LÓPEZ, Víctor, ESCALERA GUERRERO, Sergio, BARÓ I SOLÉ, Xavier, PUJOL VILA, Oriol, ANGULO BAHÓN, Cecilio. Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for Human Gesture Recognition in RGB-D. _Pattern Recognition Letters_. 2014. Vol. 50, núm. 112-121. [consulta: 25 de gener de 2026]. ISSN: 0167-8655. [Disponible a: https://hdl.handle.net/2445/119123]