Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for Human Gesture Recognition in RGB-D
| dc.contributor.author | Hernández-Vela, Antonio | |
| dc.contributor.author | Bautista Martín, Miguel Ángel | |
| dc.contributor.author | Perez-Sala, Xavier | |
| dc.contributor.author | Ponce López, Víctor | |
| dc.contributor.author | Escalera Guerrero, Sergio | |
| dc.contributor.author | Baró i Solé, Xavier | |
| dc.contributor.author | Pujol Vila, Oriol | |
| dc.contributor.author | Angulo Bahón, Cecilio | |
| dc.date.accessioned | 2018-01-18T14:17:52Z | |
| dc.date.available | 2018-01-18T14:17:52Z | |
| dc.date.issued | 2014-09-06 | |
| dc.date.updated | 2018-01-18T14:17:52Z | |
| dc.description.abstract | We present a methodology to address the problem of human gesture segmentation and recognition in video and depth image sequences. A Bag-of-Visual-and-Depth-Words (BoVDW) model is introduced as an extension of the Bag-of-Visual-Words (BoVW) model. State-of-the-art RGB and depth features, including a newly proposed depth descriptor, are analysed and combined in a late fusion form. The method is integrated in a Human Gesture Recognition pipeline, together with a novel probability-based Dynamic Time Warping (PDTW) algorithm which is used to perform prior segmentation of idle gestures. The proposed DTW variant uses samples of the same gesture category to build a Gaussian Mixture Model driven probabilistic model of that gesture class. Results of the whole Human Gesture Recognition pipeline in a public data set show better performance in comparison to both standard BoVW model and DTW approach. | |
| dc.format.extent | 10 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 627929 | |
| dc.identifier.issn | 0167-8655 | |
| dc.identifier.uri | https://hdl.handle.net/2445/119123 | |
| dc.language.iso | eng | |
| dc.publisher | Elsevier B.V. | |
| dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1016/j.patrec.2013.09.009 | |
| dc.relation.ispartof | Pattern Recognition Letters, 2014, vol. 50, p. 112-121 | |
| dc.relation.uri | https://doi.org/10.1016/j.patrec.2013.09.009 | |
| dc.rights | (c) Elsevier B.V., 2014 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Algorismes computacionals | |
| dc.subject.classification | Processos gaussians | |
| dc.subject.other | Computer algorithms | |
| dc.subject.other | Gaussian processes | |
| dc.title | Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for Human Gesture Recognition in RGB-D | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1