Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Eric Rubia Aguilera, 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/187582

On the range of holomorphic functions: from Landau to Picard’s theorems

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] The range of a holomorphic function is a classical topic in complex variable. Throughout this project, we will give several results on the size of this range. Among them we mention: Landau's Injective Theorem, Landau's Covering Theorem, Bloch's Theorem and Picard's Theorems. The first two results analyse the uniqueness in Schwarz's Lemma giving a precise estimate on the size of both the biggest disc covered by the function and the biggest disc where the function is injective, in terms of $\left|f^{\prime}(0)\right|$. Bloch's Theorem is also a covering result with fewer hypotheses on the function, and it is a key tool in the proof of Picard's Theorem. Finally, we prove both Picard's Little and Great theorems. The first states that any entire function that omits at least two values is constant, and the second one, which holds for meromorphic functions, can be viewed as a generalisation of the Casorati-Weierstraß' theorem. Finally, along the third and fourth chapters, we will see which consequences derive from these two classical results.

Descripció

Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Ma. Carme Cascante

Citació

Citació

RUBIA AGUILERA, Eric. On the range of holomorphic functions: from Landau to Picard’s theorems. [consulta: 1 de febrer de 2026]. [Disponible a: https://hdl.handle.net/2445/187582]

Exportar metadades

JSON - METS

Compartir registre