Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Reuss, Joana et al., 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/194355

Sequential Models for Endoluminal Image Classification

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Wireless Capsule Endoscopy (WCE) is a procedure to examine the human digestive system for potential mucosal polyps, tumours, or bleedings using an encapsulated camera. This work focuses on polyp detection within WCE videos through Machine Learning. When using Machine Learning in the medical field, scarce and unbalanced datasets often make it hard to receive a satisfying performance. We claim that using Sequential Models in order to take the temporal nature of the data into account improves the performance of previous approaches. Thus, we present a bidirectional Long Short-Term Memory Network (BLSTM), a sequential network that is particularly designed for temporal data. We find the BLSTM Network outperforms non-sequential architectures and other previous models, receiving a final Area under the Curve of 93.83%. Experiments show that our method of extracting spatial and temporal features yields better performance and could be a possible method to decrease the time needed by physicians to analyse the video material.

Citació

Citació

REUSS, Joana, PASCUAL, Guillem, WENZEK, Hagen, SEGUÍ MESQUIDA, Santi. Sequential Models for Endoluminal Image Classification. _Diagnostics_. 2022. Vol. 12. [consulta: 21 de gener de 2026]. ISSN: 2075-4418. [Disponible a: https://hdl.handle.net/2445/194355]

Exportar metadades

JSON - METS

Compartir registre