Sequential Models for Endoluminal Image Classification

dc.contributor.authorReuss, Joana
dc.contributor.authorPascual, Guillem
dc.contributor.authorWenzek, Hagen
dc.contributor.authorSeguí Mesquida, Santi
dc.date.accessioned2023-02-28T19:06:56Z
dc.date.available2023-02-28T19:06:56Z
dc.date.issued2022-02-15
dc.date.updated2023-02-28T19:06:56Z
dc.description.abstractWireless Capsule Endoscopy (WCE) is a procedure to examine the human digestive system for potential mucosal polyps, tumours, or bleedings using an encapsulated camera. This work focuses on polyp detection within WCE videos through Machine Learning. When using Machine Learning in the medical field, scarce and unbalanced datasets often make it hard to receive a satisfying performance. We claim that using Sequential Models in order to take the temporal nature of the data into account improves the performance of previous approaches. Thus, we present a bidirectional Long Short-Term Memory Network (BLSTM), a sequential network that is particularly designed for temporal data. We find the BLSTM Network outperforms non-sequential architectures and other previous models, receiving a final Area under the Curve of 93.83%. Experiments show that our method of extracting spatial and temporal features yields better performance and could be a possible method to decrease the time needed by physicians to analyse the video material.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec730930
dc.identifier.issn2075-4418
dc.identifier.urihttps://hdl.handle.net/2445/194355
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/diagnostics12020501
dc.relation.ispartofDiagnostics, 2022, vol. 12
dc.relation.urihttps://doi.org/10.3390/diagnostics12020501
dc.rightscc-by (c) Reuss, Joana et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationPòlips (Patologia)
dc.subject.classificationCàpsula endoscòpica
dc.subject.classificationProcessament digital d'imatges
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.otherPolyps (Pathology)
dc.subject.otherCapsule endoscopy
dc.subject.otherDigital image processing
dc.subject.otherNeural networks (Computer science)
dc.titleSequential Models for Endoluminal Image Classification
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
730930.pdf
Mida:
8.11 MB
Format:
Adobe Portable Document Format