Semen sEV tRF-Based Models Increase Non-Invasive Prediction Accuracy of Clinically Significant Prostate Cancer among Patients with Moderately Altered PSA Levels

dc.contributor.authorFerre Giraldo, Adriana
dc.contributor.authorCastells, Manel
dc.contributor.authorSánchez Herrero, José Francisco
dc.contributor.authorLópez Rodrigo, Olga
dc.contributor.authorRocco Ponce, Maurizio De
dc.contributor.authorBassas, Lluís
dc.contributor.authorVigués, Francesc
dc.contributor.authorSumoy, Lauro
dc.contributor.authorLarriba, Sara
dc.date.accessioned2024-11-15T11:02:58Z
dc.date.available2024-11-15T11:02:58Z
dc.date.issued2024-09-20
dc.date.updated2024-10-17T10:49:13Z
dc.description.abstractPSA screening has led to an over-diagnosis of prostate cancer (PCa) and unnecessary biopsies of benign conditions due to its low cancer specificity. Consequently, more accurate, preferentially non-invasive, tests are needed. We aim to evaluate the potential of semen sEV (small extracellular vesicles) tsRNAs (tRNA-derived small RNAs) as PCa indicators. Initially, following a literature review in the OncotRF database and high-throughput small RNA-sequencing studies in PCa tissue together with the sncRNA profile in semen sEVs, we selected four candidate 5 ' tRF tsRNAs for validation as PCa biomarkers. RT-qPCR analysis in semen sEVs from men with moderately elevated serum PSA levels successfully shows that the differential expression of the four tRFs between PCa and healthy control groups can be detected in a non-invasive manner. The combined model incorporating PSA and specific tRFs (5 '-tRNA-Glu-TTC-9-1_L30 and 5 '-tRNA-Val-CAC-3-1_L30) achieved high predictive accuracy in identifying samples with a Gleason score >= 7 and staging disease beyond IIA, supporting that the 5 ' tRF fingerprint in semen sEV can improve the PSA predictive value to discriminate between malignant and indolent prostate conditions. The in silico study allowed us to map target genes for the four 5 ' tRFs possibly involved in PCa. Our findings highlight the synergistic use of multiple biomarkers as an efficient approach to improve PCa screening and prognosis.
dc.format.extent24 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn1422-0067
dc.identifier.pmid39337607
dc.identifier.urihttps://hdl.handle.net/2445/216515
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/ijms251810122
dc.relation.ispartofInternational Journal of Molecular Sciences, 2024, vol. 25, num. 18
dc.relation.urihttps://doi.org/10.3390/ijms251810122
dc.rightscc-by (c) Ferre Giraldo, Adriana et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationCàncer de pròstata
dc.subject.classificationSemen
dc.subject.classificationDiagnòstic
dc.subject.classificationPronòstic mèdic
dc.subject.otherProstate cancer
dc.subject.otherSemen
dc.subject.otherDiagnosis
dc.subject.otherPrognosis
dc.titleSemen sEV tRF-Based Models Increase Non-Invasive Prediction Accuracy of Clinically Significant Prostate Cancer among Patients with Moderately Altered PSA Levels
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
ijms-25-10122.pdf
Mida:
4.89 MB
Format:
Adobe Portable Document Format