Fine-tuned KDM1A alternative splicing regulates human cardiomyogenesis through an enzymatic-independent mechanism

dc.contributor.authorAstro, Veronica
dc.contributor.authorRamirez Calderon, Gustavo
dc.contributor.authorPennucci, Roberta
dc.contributor.authorCaroli, Jonatan
dc.contributor.authorSaera Vila, Alfonso
dc.contributor.authorCardona Londoño, Kelly
dc.contributor.authorForastieri, Chiara
dc.contributor.authorFiacco, Elisabetta
dc.contributor.authorMaksoud, Fatima
dc.contributor.authorAlowaysi, Maryam
dc.contributor.authorSogne, Elisa
dc.contributor.authorFalqui, Andrea
dc.contributor.authorGonzález, Federico
dc.contributor.authorMontserrat, Nuria
dc.contributor.authorBattaglioli, Elena
dc.contributor.authorMattevi, Andrea
dc.contributor.authorAdamo, Antonio
dc.date.accessioned2022-09-06T12:27:26Z
dc.date.available2022-09-06T12:27:26Z
dc.date.issued2022-07-15
dc.date.updated2022-09-05T13:40:58Z
dc.description.abstractThe histone demethylase KDM1A is a multi- faceted regulator of vital developmental processes, including mesodermal and cardiac tube formation during gastrulation. However, it is unknown whether the fine-tuning of KDM1A splicing isoforms, already shown to regulate neuronal maturation, is crucial for the specification and maintenance of cell identity during cardiogenesis. Here, we discovered a temporal modulation of ubKDM1A and KDM1A+2a during human and mice fetal cardiac development and evaluated their impact on the regulation of cardiac differentiation. We revealed a severely impaired cardiac differentiation in KDM1A(-/-) hESCs that can be rescued by re-expressing ubKDM1A or catalytically impaired ubKDM1A-K661A, but not by KDM1A+2a or KDM1A+2a-K661A. Conversely, KDM1A+2a(-/-) hESCs give rise to functional cardiac cells, displaying increased beating amplitude and frequency and enhanced expression of critical cardiogenic markers. Our findings prove the existence of a divergent scaffolding role of KDM1A splice variants, independent of their enzymatic activity, during hESC differentiation into cardiac cells.
dc.format.extent33 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idimarina6564039
dc.identifier.issn2589-0042
dc.identifier.pmid35856020
dc.identifier.urihttps://hdl.handle.net/2445/188730
dc.language.isoeng
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.isci.2022.104665
dc.relation.ispartofIscience, 2022, vol. 25, num.7, p. 104665
dc.relation.urihttps://doi.org/10.1016/j.isci.2022.104665
dc.rightscc by-nc-nd (c) Astro, Veronica et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))
dc.subject.classificationCèl·lules mare
dc.subject.classificationRegulació genètica
dc.subject.classificationCèl·lules
dc.subject.otherStem cells
dc.subject.otherGenetic regulation
dc.subject.otherCells
dc.titleFine-tuned KDM1A alternative splicing regulates human cardiomyogenesis through an enzymatic-independent mechanism
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
2022_iScience_Fine_MontserratN.pdf
Mida:
7.72 MB
Format:
Adobe Portable Document Format