An alternative proof of the characterization of core stability for the assignment game

dc.contributor.authorAtay, Ata
dc.date.accessioned2023-06-19T07:10:34Z
dc.date.available2023-06-19T07:10:34Z
dc.date.issued2017-05-01
dc.date.updated2023-06-19T07:10:34Z
dc.description.abstractSolymosi and Raghavan (2001), characterize the stability of the core of the assignment game by means of a property of the valuation matrix. They show that the core of an assignment game is a von Neumann-Morgenstern stable set if and only if its valuation matrix has a dominant diagonal. While their proof makes use of graph-theoretical tools, the alternative proof presented here relies on the notion of the buyer-seller exact representative, as introduced by Núñez and Rafels in 2002.
dc.format.extent3 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec716842
dc.identifier.issn0167-6377
dc.identifier.urihttps://hdl.handle.net/2445/199460
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.orl.2017.03.001
dc.relation.ispartofOperations Research Letters, 2017, vol. 45, num. 3, p. 217-219
dc.relation.urihttps://doi.org/10.1016/j.orl.2017.03.001
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtica Econòmica, Financera i Actuarial)
dc.subject.classificationTeoria de jocs
dc.subject.classificationAssignació de recursos
dc.subject.classificationÀlgebres de Von Neumann
dc.subject.classificationProblema de Neumann
dc.subject.otherGame theory
dc.subject.otherResource allocation
dc.subject.otherVon Neumann algebras
dc.subject.otherNeumann problem
dc.titleAn alternative proof of the characterization of core stability for the assignment game
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
716842.pdf
Mida:
305.74 KB
Format:
Adobe Portable Document Format