Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/173728
A multimodal deep learning approach for food tray recognition
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] Food recognition, object detection and classification applied to the food domain, is the main topic of this work. We have studied the problem of recognising food instances in tray images of self-service restaurants and have proposed a novel multimodal deep learning approach. From images and daily menus, the model presented uses two state of the art models in object detection and classification and a multimodal neural network to make significantly refined predictions compared to the baseline object detection model, achieving a class weighted average F1-score of 0.862. An ensemble model built from the proposed and the baseline models, also presented in this work, improves the results achieving a class weighted average F1-score of 0.877.
Descripció
Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Marc Bolaños i Petia Radeva
Citació
Citació
PERACAULA PRAT, Joan. A multimodal deep learning approach for food tray recognition. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/173728]