Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

memòria: cc-nc-nd (c) Joan Peracaula Prat, 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/173728

A multimodal deep learning approach for food tray recognition

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] Food recognition, object detection and classification applied to the food domain, is the main topic of this work. We have studied the problem of recognising food instances in tray images of self-service restaurants and have proposed a novel multimodal deep learning approach. From images and daily menus, the model presented uses two state of the art models in object detection and classification and a multimodal neural network to make significantly refined predictions compared to the baseline object detection model, achieving a class weighted average F1-score of 0.862. An ensemble model built from the proposed and the baseline models, also presented in this work, improves the results achieving a class weighted average F1-score of 0.877.

Descripció

Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Marc Bolaños i Petia Radeva

Citació

Citació

PERACAULA PRAT, Joan. A multimodal deep learning approach for food tray recognition. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/173728]

Exportar metadades

JSON - METS

Compartir registre