Quadratures de Txebixov a l’interval i Teorema de Bernstein

dc.contributor.advisorMarzo Sánchez, Jordi
dc.contributor.authorOliver Santacreu, Júlia
dc.date.accessioned2021-06-03T09:15:33Z
dc.date.available2021-06-03T09:15:33Z
dc.date.issued2020-06-21
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Jordi Marzo Sánchezca
dc.description.abstract[en] In this work we will prove a theorem that Bernstein proved in 1937. This theorem states that there are no quadrature formulas with equal weights (of Chebyshev) in the interval $[-1,1]$ $$ \int_{-1}^{1} f(x) d x \approx \frac{2}{n} \sum_{k=1}^{n} f\left(x_{k}\right) $$ that are true for polynomials $f$ of degree $\leq n$, with nodes $x_{k} \in[-1,1]$, if $n \geq 10$. We will also see some results related to the distribution of these nodes when $n$ is large.ca
dc.format.extent39 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/177922
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Júlia Oliver Santacreu, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationFuncions hipergeomètriquesca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationPolinomis ortogonalsca
dc.subject.classificationTeoria de l'aproximacióca
dc.subject.classificationIntegració numèricaca
dc.subject.otherHypergeometric functionsen
dc.subject.otherBachelor's theses
dc.subject.otherOrthogonal polynomialsen
dc.subject.otherApproximation theoryen
dc.subject.otherNumerical integrationen
dc.titleQuadratures de Txebixov a l’interval i Teorema de Bernsteinca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
177922.pdf
Mida:
525.51 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria