El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 
Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc by-nc-nd (c) Torres Pachón, 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/189745

Stationary Reflection on Pₖ (λ)

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

Throughout history, mathematicians have had to deal with infinity, always considering it in the “potential” sense, rather than an actual object. It was not until the late nineteenth century that actual infinity was the subject matter. In 1874 George Cantor published “On a Property of the Collection of All Real Algebraic Numbers”. From the results he proved in that paper, he concluded that there were larger infinites than others, giving birth in this way to Set Theory, the study of infinite sets and the set-theoretic foundations of mathematics. The study of infinite sets, and in particular their combinatorial properties, is not only of interest in itself, but it has numerous applications in areas such as analysis, algebra and topology (see e.g. [1; 2; 3]). Even possible applications to mathematical biology have being studied [4]. Combinatorics is always concerned about sizes, and when dealing with infinite sets there are different ways to capture the idea of how large a set is. For example, the notion of “filter” on a set A corresponds to “big” subsets of A, while positive subsets in the sense of a given filter corresponds to the notion of “not small”. Stationary subsets of a cardinal k are those that are not small in the sense of the closed and unbounded filter of k.

Descripció

Treballs Finals del Màster de Lògica Pura i Aplicada, Facultat de Filosofia, Universitat de Barcelona. Curs: 2021-2022. Tutor: Joan Bagaria Pigrau

Citació

Citació

TORRES PACHÓN, Martha catalina. Stationary Reflection on Pₖ (λ). [consulta: 31 de desembre de 2025]. [Disponible a: https://hdl.handle.net/2445/189745]

Exportar metadades

JSON - METS

Compartir registre