Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/189745
Stationary Reflection on Pₖ (λ)
Títol de la revista
ISSN de la revista
Títol del volum
Resum
Throughout history, mathematicians have had to deal with infinity, always considering it in the
“potential” sense, rather than an actual object. It was not until the late nineteenth century that
actual infinity was the subject matter. In 1874 George Cantor published “On a Property of the
Collection of All Real Algebraic Numbers”. From the results he proved in that paper, he concluded
that there were larger infinites than others, giving birth in this way to Set Theory, the study of
infinite sets and the set-theoretic foundations of mathematics.
The study of infinite sets, and in particular their combinatorial properties, is not only of interest
in itself, but it has numerous applications in areas such as analysis, algebra and topology (see e.g.
[1; 2; 3]). Even possible applications to mathematical biology have being studied [4]. Combinatorics
is always concerned about sizes, and when dealing with infinite sets there are different ways to
capture the idea of how large a set is. For example, the notion of “filter” on a set A corresponds to
“big” subsets of A, while positive subsets in the sense of a given filter corresponds to the notion
of “not small”. Stationary subsets of a cardinal k are those that are not small in the sense of the
closed and unbounded filter of k.
Descripció
Treballs Finals del Màster de Lògica Pura i Aplicada, Facultat de Filosofia, Universitat de Barcelona. Curs: 2021-2022. Tutor: Joan Bagaria Pigrau
Matèries
Matèries (anglès)
Citació
Citació
TORRES PACHÓN, Martha catalina. Stationary Reflection on Pₖ (λ). [consulta: 26 de novembre de 2025]. [Disponible a: https://hdl.handle.net/2445/189745]