El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 

Stationary Reflection on Pₖ (λ)

dc.contributor.advisorBagaria, Joan
dc.contributor.authorTorres Pachón, Martha Catalina
dc.date.accessioned2022-10-10T14:36:13Z
dc.date.available2022-10-10T14:36:13Z
dc.date.issued2022
dc.descriptionTreballs Finals del Màster de Lògica Pura i Aplicada, Facultat de Filosofia, Universitat de Barcelona. Curs: 2021-2022. Tutor: Joan Bagaria Pigrauca
dc.description.abstractThroughout history, mathematicians have had to deal with infinity, always considering it in the “potential” sense, rather than an actual object. It was not until the late nineteenth century that actual infinity was the subject matter. In 1874 George Cantor published “On a Property of the Collection of All Real Algebraic Numbers”. From the results he proved in that paper, he concluded that there were larger infinites than others, giving birth in this way to Set Theory, the study of infinite sets and the set-theoretic foundations of mathematics. The study of infinite sets, and in particular their combinatorial properties, is not only of interest in itself, but it has numerous applications in areas such as analysis, algebra and topology (see e.g. [1; 2; 3]). Even possible applications to mathematical biology have being studied [4]. Combinatorics is always concerned about sizes, and when dealing with infinite sets there are different ways to capture the idea of how large a set is. For example, the notion of “filter” on a set A corresponds to “big” subsets of A, while positive subsets in the sense of a given filter corresponds to the notion of “not small”. Stationary subsets of a cardinal k are those that are not small in the sense of the closed and unbounded filter of k.ca
dc.format.extent44 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/189745
dc.language.isoengca
dc.rightscc by-nc-nd (c) Torres Pachón, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Pure and Applied Logic / Lògica Pura i aplicada
dc.subject.classificationLògica
dc.subject.classificationLògica matemàtica
dc.subject.classificationTreballs de fi de màster
dc.subject.otherLogic
dc.subject.otherMathematical logic
dc.subject.otherMaster's theses
dc.titleStationary Reflection on Pₖ (λ)ca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
TFM_Catalina_Torres.pdf
Mida:
988.72 KB
Format:
Adobe Portable Document Format
Descripció: