Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Jonas Teuwen et al., 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/195441

Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The two-dimensional nature of mammography. makes estimation of the overall breast density challenging, and estimation of the true patient-specific radiation dose impossible. Digital breast tomosynthesis (DBT), a pseudo-3D technique, is now commonly used in breast cancer screening and diagnostics. Still, the severely limited 3rd dimension information in DBT has not been used, until now, to estimate the true breast density or the patient-specific dose. This study proposes a reconstruction algorithm for DBT based on deep learning specifically optimized for these tasks. The algorithm, which we name DBToR, is based on unrolling a proximal-dual optimization method. The proximal operators are replaced with convolutional neural networks and prior knowledge is included in the model. This extends previous work on a deep learningbased reconstruction model by providing both the primal and the dual blocks with breast thickness information, which is available in DBT. Training and testing of the model were performed using virtual patient phantoms from two different sources. Reconstruction performance, and accuracy in estimation of breast density and radiation dose, were estimated, showing high accuracy (density $< \pm 3 \%$; dose $< \pm 20 \%$ ) without bias, significantly improving on the current state-of-the-art. This work also lays the groundwork for developing a deep learning-based reconstruction algorithm for the task of image interpretation by radiologists.

Citació

Citació

TEUWEN, Jonas, MORIAKOV, Nikita, FEDON, Christian, CABALLO, Marco, REISER, Ingrid, BAKIC, Pedrag, GARCIA, Eloy, DÍAZ, Oliver, MICHIELSEN, Koen, SECHOPOULOS, Ioannis. Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation. _Medical Image Analysis_. 2021. Vol. 71. [consulta: 23 de gener de 2026]. ISSN: 1361-8415. [Disponible a: https://hdl.handle.net/2445/195441]

Exportar metadades

JSON - METS

Compartir registre