Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation

dc.contributor.authorTeuwen, Jonas
dc.contributor.authorMoriakov, Nikita
dc.contributor.authorFedon, Christian
dc.contributor.authorCaballo, Marco
dc.contributor.authorReiser, Ingrid
dc.contributor.authorBakic, Pedrag
dc.contributor.authorGarcia, Eloy
dc.contributor.authorDíaz, Oliver
dc.contributor.authorMichielsen, Koen
dc.contributor.authorSechopoulos, Ioannis
dc.date.accessioned2023-03-17T07:59:49Z
dc.date.available2023-03-17T07:59:49Z
dc.date.issued2021-07
dc.date.updated2023-03-17T07:59:49Z
dc.description.abstractThe two-dimensional nature of mammography. makes estimation of the overall breast density challenging, and estimation of the true patient-specific radiation dose impossible. Digital breast tomosynthesis (DBT), a pseudo-3D technique, is now commonly used in breast cancer screening and diagnostics. Still, the severely limited 3rd dimension information in DBT has not been used, until now, to estimate the true breast density or the patient-specific dose. This study proposes a reconstruction algorithm for DBT based on deep learning specifically optimized for these tasks. The algorithm, which we name DBToR, is based on unrolling a proximal-dual optimization method. The proximal operators are replaced with convolutional neural networks and prior knowledge is included in the model. This extends previous work on a deep learningbased reconstruction model by providing both the primal and the dual blocks with breast thickness information, which is available in DBT. Training and testing of the model were performed using virtual patient phantoms from two different sources. Reconstruction performance, and accuracy in estimation of breast density and radiation dose, were estimated, showing high accuracy (density $< \pm 3 \%$; dose $< \pm 20 \%$ ) without bias, significantly improving on the current state-of-the-art. This work also lays the groundwork for developing a deep learning-based reconstruction algorithm for the task of image interpretation by radiologists.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec713649
dc.identifier.issn1361-8415
dc.identifier.urihttps://hdl.handle.net/2445/195441
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.media.2021.102061
dc.relation.ispartofMedical Image Analysis, 2021, vol. 71
dc.relation.urihttps://doi.org/10.1016/j.media.2021.102061
dc.rightscc-by (c) Jonas Teuwen et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationInterpolació (Matemàtica)
dc.subject.classificationDisseny assistit per ordinador
dc.subject.classificationCàncer de mama
dc.subject.otherMachine learning
dc.subject.otherInterpolation
dc.subject.otherComputer-aided design
dc.subject.otherBreast cancer
dc.titleDeep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
713649.pdf
Mida:
1.98 MB
Format:
Adobe Portable Document Format