Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Betancor, Diana et al, 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/199606

How reliably can algorithms identify eosinophilic asthma phenotypes using non-invasive biomarkers?

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Asthma is a heterogeneous respiratory disease that encompasses different inflammatory and functional endophenotypes. Many non-invasive biomarkers has been investigated to its pathobiology. Heany et al proposed a clinical algorithm that classifies severe asthmatic patients into likely-eosinophilic phenotypes, based on accessible biomarkers: PBE, current treatment, FeNO, presence of nasal polyps (NP) and age of onset.We assessed the concordance between the algorithm proposed by Heany et al. with sputum examination, the gold standard, in 145 asthmatic patients of the MEGA cohort with varying grades of severity.No correlation was found between both classifications 0.025 (CI = 0.013-0.037). Moreover, no relationship was found between sputum eosinophilia and peripheral blood eosinophilia count in the total studied population.In conclusion, our results suggest that grouping the biomarkers proposed by Heany et al. are insufficient to diagnose eosinophilic phenotypes in asthmatic patients. Sputum analysis remains the gold standard to assess airway inflammation.© 2022 The Authors. Clinical and Translational Allergy published by John Wiley & Sons Ltd on behalf of European Academy of Allergy and Clinical Immunology.

Citació

Citació

BETANCOR, Diana, OLAGUIBEL, José maría, RODRIGO MUÑOZ, José manuel, ARISMENDI, Ebymar, BARRANCO, Pilar, BARROSO, Blanca, BOBOLEA, Irina, CÁRDABA, Blanca, CRUZ, María jesús, CURTO, Elena, POZO, Victoria del, GONZÁLEZ BARCALA, Francisco javier, MARTÍNEZ RIVERA, Carlos, MULLOL I MIRET, Joaquim, MUÑOZ, Xavier, PICADO VALLÉS, César, PLAZA, Vicente, QUIRCE, Santiago, RIAL PRADO, Manuel jorge, SOTO, Lorena, VALERO, Antonio, VALVERDE MONGE, Marcela, SASTRE, Joaquín. How reliably can algorithms identify eosinophilic asthma phenotypes using non-invasive biomarkers?. _Clinical And Translational Allergy_. 2022. Vol. 12, núm. 8. [consulta: 21 de gener de 2026]. ISSN: 2045-7022. [Disponible a: https://hdl.handle.net/2445/199606]

Exportar metadades

JSON - METS

Compartir registre