Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/185653
Les xarxes neuronals de propagació cap endavant. Una aproximació matemàtica
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] In this work we describe what feedforward neural networks are and how they are used. We explain the elements that make them up: layers, depth, weights, biases, learning rate and activation function.
Then we see that feedforward neural networks are universal approximators of functions under certain conditions. We study two different ways to prove this. On the one hand, the Kolmogorov-Sprecher pathway tells us that feedforward neural networks with three layers, $\mathrm{n}$ components in the first layer, $2 n+1$ nodes in the second layer, and modes in the last layer are universal approximators of continuous functions from $\mathbb{R}^{n}$ a $\mathbb{R}^{m}$ as long as the activation function is monotonically increasing and class $\operatorname{Lip}\left[\frac{\ln 2}{\ln (2 N+2}\right]$. On the other hand, in the second pathway we see that feedforward neural networks are universal approximations of any measurable function as long as the activation function of the neural network is a squashing function.
Finally we explain how to determine the different elements that configure the feedforward neural networks. We define the cost function. We explain that by minimizing the cost function by the stochastic gradient descent method and the learning rate we can calculate the weights and biases. At the end we study different activation functions and see how they affect neural networks also explaining the vanishing gradient.
Descripció
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Eloi Sans Gispert
Citació
Col·leccions
Citació
SÁNCHEZ ALBALADEJO, Raül. Les xarxes neuronals de propagació cap endavant. Una aproximació matemàtica. [consulta: 22 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/185653]