Enhancing cardiac image segmentation through persistent homology regularization

dc.contributor.advisorEscalera Guerrero, Sergio
dc.contributor.advisorCasacuberta, Carles
dc.contributor.advisorBallester Bautista, Rubén
dc.contributor.authorMorera Barrios, Ignacio Javier
dc.date.accessioned2023-06-02T08:51:33Z
dc.date.available2023-06-02T08:51:33Z
dc.date.issued2022-10-19
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Sergio Escalera Guerrero, Carles Casacuberta i Rubén Ballester Bautistaca
dc.description.abstract[en] Cardiovascular diseases are a major cause of death and disability. Deep learning-based segmentation methods could help to reduce their severity by aiding in early diagnosing but high levels of accuracy are necessary. The vast majority of methods focus on correcting local errors and miss the global picture. To ad- dress this issue, researchers have developed techniques that incorporate global context and consider the relationships between pixels. Here, we apply persistent homology, a branch of topology that studies the topological structure of shapes, along with deep learning methods to improve the heart segmentation. We use multidimensional topological losses to avoid spurious components and holes and increase the total accuracy. We evaluate the performance of three different approaches: using the dice and pixel-wise losses with the sum of persistences of label diagrams as a regularizer, using the dice and pixel-wise losses with the bottleneck distance as a regularizer, and using both losses without any regularization. We find that, while more computationally demanding, the methods using topological regularizers outperform the other method in terms of accuracy.ca
dc.format.extent66 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/198820
dc.language.isoengca
dc.rightsmemòria: cc-nc-nd (c) Ignacio Javier Morera Barrios, 2022
dc.rightscodi: GPL (c) Ignacio Javier Morera Barrios, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationHomologiaca
dc.subject.classificationEstadística matemàticaca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationMalalties cardiovascularsca
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationDiagnòstic per la imatgeca
dc.subject.otherHomologyen
dc.subject.otherMathematical statisticsen
dc.subject.otherComputer softwareen
dc.subject.otherCardiovascular diseasesen
dc.subject.otherMachine learningen
dc.subject.otherBachelor's thesesen
dc.subject.otherDiagnostic imagingen
dc.titleEnhancing cardiac image segmentation through persistent homology regularizationca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
tfg_morera_barrios_ignacio_javier.pdf
Mida:
2.04 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
codi.zip
Mida:
2.75 MB
Format:
ZIP file
Descripció:
Codi font