Data mining analyses for precision medicine in acromegaly: a proof of concept

dc.contributor.authorGil, Joan
dc.contributor.authorMarques Pamies, Montserrat
dc.contributor.authorSampedro, Miguel
dc.contributor.authorWebb, Susan M.
dc.contributor.authorSerra, Guillermo
dc.contributor.authorSalinas, Isabel
dc.contributor.authorBlanco, Alberto
dc.contributor.authorValassi, Elena
dc.contributor.authorCarrato, Cristina
dc.contributor.authorPicó, Antonio
dc.contributor.authorGarcía Martínez, Araceli
dc.contributor.authorMartel Duguech, Luciana
dc.contributor.authorSardon, Teresa
dc.contributor.authorSimó Servat, Andreu
dc.contributor.authorBiagetti, Betina
dc.contributor.authorVillabona, Carles
dc.contributor.authorCámara, Rosa
dc.contributor.authorFajardo Montañana, Carmen
dc.contributor.authorÁlvarez Escolá, Cristina
dc.contributor.authorLamas, Cristina
dc.contributor.authorAlvarez, Clara V.
dc.contributor.authorBernabéu, Ignacio
dc.contributor.authorMarazuela, Mónica
dc.contributor.authorJordà, Mireia
dc.contributor.authorPuig Domingo, Manuel
dc.date.accessioned2022-06-27T08:53:06Z
dc.date.available2022-06-27T08:53:06Z
dc.date.issued2022-05-28
dc.date.updated2022-06-23T11:40:09Z
dc.description.abstractPredicting which acromegaly patients could benefit from somatostatin receptor ligands (SRL) is a must for personalized medicine. Although many biomarkers linked to SRL response have been identified, there is no consensus criterion on how to assign this pharmacologic treatment according to biomarker levels. Our aim is to provide better predictive tools for an accurate acromegaly patient stratification regarding the ability to respond to SRL. We took advantage of a multicenter study of 71 acromegaly patients and we used advanced mathematical modelling to predict SRL response combining molecular and clinical information. Different models of patient stratification were obtained, with a much higher accuracy when the studied cohort is fragmented according to relevant clinical characteristics. Considering all the models, a patient stratification based on the extrasellar growth of the tumor, sex, age and the expression of E-cadherin, GHRL, IN1-GHRL, DRD2, SSTR5 and PEBP1 is proposed, with accuracies that stand between 71 to 95%. In conclusion, the use of data mining could be very useful for implementation of personalized medicine in acromegaly through an interdisciplinary work between computer science, mathematics, biology and medicine. This new methodology opens a door to more precise and personalized medicine for acromegaly patients.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn2045-2322
dc.identifier.pmid35643771
dc.identifier.urihttps://hdl.handle.net/2445/187041
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41598-022-12955-2
dc.relation.ispartofScientific Reports, 2022, vol. 12, num. 8979
dc.relation.urihttps://doi.org/10.1038/s41598-022-12955-2
dc.rightscc by (c) Gil, Joan et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationTrastorns del creixement
dc.subject.classificationHormones
dc.subject.classificationMarcadors bioquímics
dc.subject.classificationMedicina personalitzada
dc.subject.meshHormones
dc.subject.otherGrowth disorders
dc.subject.otherBiochemical markers
dc.subject.otherPersonalized medicine
dc.titleData mining analyses for precision medicine in acromegaly: a proof of concept
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
s41598-022-12955-2.pdf
Mida:
1.86 MB
Format:
Adobe Portable Document Format