Residual ideals of MacLane valuations

dc.contributor.authorFernández González, Julio
dc.contributor.authorGuàrdia, Jordi
dc.contributor.authorMontes, Jesús
dc.contributor.authorNart, Enric
dc.date.accessioned2020-06-16T17:25:00Z
dc.date.available2020-06-16T17:25:00Z
dc.date.issued2015-04
dc.date.updated2020-06-16T17:25:00Z
dc.description.abstractLet $K$ be a field equipped with a discrete valuation $v$. In a pioneering work, S. MacLane determined all extensions of $v$ to discrete valuations on $K(x)$. His work was recently reviewed and generalized by M. Vaquié, by using the graded algebra of a valuation. We extend Vaquié's approach by studying residual ideals of the graded algebra of a valuation as an abstract counterpart of certain residual polynomials which play a key role in the computational applications of the theory. As a consequence, we determine the structure of the graded algebra of any discrete valuation on $K(x)$ and we show how these valuations may be used to parameterize irreducible polynomials over local fields up to Okutsu equivalence.
dc.format.extent46 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec645823
dc.identifier.issn0021-8693
dc.identifier.urihttps://hdl.handle.net/2445/165873
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.jalgebra.2014.12.022
dc.relation.ispartofJournal of Algebra, 2015, vol. 427, p. 30-75
dc.relation.urihttps://doi.org/10.1016/j.jalgebra.2014.12.022
dc.rights(c) Elsevier, 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtica Econòmica, Financera i Actuarial)
dc.subject.classificationÀlgebra
dc.subject.classificationAritmètica computacional
dc.subject.otherAlgebra
dc.subject.otherComputer arithmetic
dc.titleResidual ideals of MacLane valuations
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
645823.pdf
Mida:
505.21 KB
Format:
Adobe Portable Document Format