On the sharpness of the Rüssmann estimates

dc.contributor.authorFigueras Romero, Jordi-Lluís
dc.contributor.authorHaro, Àlex
dc.contributor.authorLuque Jiménez, Alejandro
dc.date.accessioned2019-10-24T11:06:54Z
dc.date.available2020-02-28T06:10:19Z
dc.date.issued2018-02
dc.date.updated2019-10-24T11:06:55Z
dc.description.abstractEstimating the norm of the solution of the linear difference equation plays a fundamental role in KAM theory. Optimal (in certain sense) estimates for the solution of this equation were provided by Rüssmann in the mid 70's. The aim of this paper is to compare the sharpness of these classical estimates with more specific estimates obtained with the help of the computer. We perform several experiments to quantify the improvement obtained when using computer assisted estimates. By comparing these estimates with the actual norm of the solution, we can analyze the different sources of overestimation, thus encouraging future improvements.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec672367
dc.identifier.issn1007-5704
dc.identifier.urihttps://hdl.handle.net/2445/143058
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.cnsns.2017.06.021
dc.relation.ispartofCommunications In Nonlinear Science And Numerical Simulation, 2018, vol. 55, p. 42-55
dc.relation.urihttps://doi.org/10.1016/j.cnsns.2017.06.021
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationEquacions diferencials lineals
dc.subject.classificationSistemes dinàmics complexos
dc.subject.otherLinear differential equations
dc.subject.otherComplex dynamical systems
dc.titleOn the sharpness of the Rüssmann estimates
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
672367.pdf
Mida:
519.73 KB
Format:
Adobe Portable Document Format