Fuzzy k-NN applied to mould detection

dc.contributor.authorKuske, M.
dc.contributor.authorRubio, R.
dc.contributor.authorRomain, A. C.
dc.contributor.authorNicolas, J.
dc.contributor.authorMarco Colás, Santiago
dc.date.accessioned2018-10-19T13:33:18Z
dc.date.available2018-10-19T13:33:18Z
dc.date.issued2005
dc.date.updated2018-10-19T13:33:19Z
dc.description.abstractThe possibility to detect Aspergillus versicolor growing on different building materials by a metal oxide sensor array is studied. Results show that an accurate classification rate of 89 ± 3% can be obtained combining an extended linear discriminant analysis plus a fuzzy k-NN classifier. The classification ability of the classifier is assessed within the dataset by crossvalidation and also in a second dataset collected 5 months later. There is a slight decrease in the classification performance for all the algorithms, being the most sensitive the most accurate one.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec517593
dc.identifier.issn0925-4005
dc.identifier.urihttps://hdl.handle.net/2445/125468
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.snb.2004.05.066
dc.relation.ispartofSensors and Actuators B-Chemical, 2005, vol. 106, p. 52-60
dc.relation.urihttps://doi.org/10.1016/j.snb.2004.05.066
dc.rights(c) Elsevier B.V., 2005
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationConjunts borrosos
dc.subject.classificationXarxes de sensors
dc.subject.otherFuzzy sets
dc.subject.otherSensor networks
dc.titleFuzzy k-NN applied to mould detection
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
517593.pdf
Mida:
599.31 KB
Format:
Adobe Portable Document Format