Carregant...
Fitxers
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/177970
Global dynamics of Newton’s method for complex polynomials
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] Newton’s method, as a root-finding algorithm, has been used since ancient times to solve daily problems. Nevertheless, it was not until the second half of the nineteenth century that it began being studied as a dynamical system in the complex plane. Following this path, the main goal of this thesis is to understand and prove, using recently developed techniques, Shishikura’s result on the connectivity of the Julia set of the Newton map of polynomials. To do so, we first present a set of preliminary tools that contain normal families, conformal
representations and proper maps, among others. It is followed by a study of rational complex dynamical systems, some results on the existence of fixed points of meromorphic maps and it is concluded by what is the cornerstone of this project: the proof of the connectivity of the Julia set of Newton maps of polynomials.
Descripció
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Núria Fagella Rabionet
Citació
Col·leccions
Citació
PEDEMONTE BERNAT, Martí. Global dynamics of Newton’s method for complex polynomials. [consulta: 7 de febrer de 2026]. [Disponible a: https://hdl.handle.net/2445/177970]