Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Ingrid Mases Solé, 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/177872

Brownian motion

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] The aim of this work is to study the Brownian motion from a theoretical approach. Brownian motion (also named Wiener process) is one of the best known stochastic processes and plays an important role in both pure and applied Mathematics. In the first chapter, we present the basic concepts of the theory of stochastic processes such as filtrations, stopping times and martingales which are needed to develop further sections of the project. In the second chapter, we define the Brownian motion itself. Furthermore, two different constructions of Brownian motion are provided. The first one presents theorems of existence and continuity of stochastic processes from which we end up building the Brownian motion. The second construction provides another proof for the existence of Brownian motion based on the idea of the weak limit of a sequence of random walks. In the third chapter, we present a discussion of some properties of Brownian motion paths, also called sample path properties. These include characterizations of bad behaviour such as the nondifferentiability, as well as characterizations of good behaviour like the law of the iterated logarithm. Moreover, we study the zero sets, the quadratic variation and the lack of monotonicity of the Brownian paths. Finally, we show some Python simulations of one dimensional Brownian paths.

Descripció

Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Josep Vives i Santa Eulàlia

Citació

Citació

MASES SOLÉ, Ingrid. Brownian motion. [consulta: 15 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/177872]

Exportar metadades

JSON - METS

Compartir registre