Objectes cel·lulars en categories de models

dc.contributor.advisorCasacuberta, Carles
dc.contributor.authorGarcía Barros, Manuela
dc.date.accessioned2018-03-22T09:25:41Z
dc.date.available2018-03-22T09:25:41Z
dc.date.issued2016-09-11
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2016, Director: Carles Casacubertaca
dc.description.abstractWhitehead’s Theorem is a classical result in algebraic topology which states that any continuous map between CW complexes which is both inducing a bijection of path connected components and isomorphisms in homotopy groups for any choice of base point is an homotopy equivalence. CW complexes are topological spaces built through an interative process of cell attachment. In the 1990s a more general notion of cellular object in the framework of model categories was given and it started a really productive work on cellular objects in many other areas like commutative algebra, group theory or algebraic geometry. The first aim of this work is to write down the proof of Whitehead’s Theorem in pointed model categories which states that an $A$-equivalence between $A$-cellular fibrant objects is an homotopy equivalence for any cofibrant object $A$.ca
dc.format.extent219 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/120986
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Manuela GarcÍa Barros, 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.sourceMàster Oficial - Matemàtica Avançada
dc.subject.classificationTopologia algebraicacat
dc.subject.classificationTeoria de grupscat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.classificationCategories (Matemàtica)ca
dc.subject.otherAlgebraic topologyeng
dc.subject.otherGroup theoryeng
dc.subject.otherMaster's theseseng
dc.subject.otherCategories (Mathematics)en
dc.titleObjectes cel·lulars en categories de modelsca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
2.95 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria