The multidrug-resistant PMEN1 pneumococcus is a paradigm for genetic success

dc.contributor.authorWyres, Kelly L.
dc.contributor.authorLambertsen, Lotte M.
dc.contributor.authorCroucher, Nicholas J.
dc.contributor.authorMcGee, Lesley
dc.contributor.authorvon Gottberg, Anne
dc.contributor.authorLiñares Louzao, Josefina
dc.contributor.authorJacobs, Michael R.
dc.contributor.authorKristinsson, Karl G.
dc.contributor.authorBeall, Bernard W.
dc.contributor.authorKlugman, Keith P.
dc.contributor.authorParkhill, Julian
dc.contributor.authorHakenbeck, Regine
dc.contributor.authorBentley, Stephen D.
dc.contributor.authorBrueggemann, Angela B.
dc.date.accessioned2018-11-15T08:44:57Z
dc.date.available2018-11-15T08:44:57Z
dc.date.issued2012-11-16
dc.date.updated2018-11-15T08:44:57Z
dc.description.abstractBackground: Streptococcus pneumoniae, also called the pneumococcus, is a major bacterial pathogen. Since its introduction in the 1940s, penicillin has been the primary treatment for pneumococcal diseases. Penicillin resistance rapidly increased among pneumococci over the past 30 years, and one particular multidrug-resistant clone, PMEN1, became highly prevalent globally. We studied a collection of 426 pneumococci isolated between 1937 and 2007 to better understand the evolution of penicillin resistance within this species. Results: We discovered that one of the earliest known penicillin-nonsusceptible pneumococci, recovered in 1967 from Australia, was the likely ancestor of PMEN1, since approximately 95% of coding sequences identified within its genome were highly similar to those of PMEN1. The regions of the PMEN1 genome that differed from the ancestor contained genes associated with antibiotic resistance, transmission and virulence. We also revealed that PMEN1 was uniquely promiscuous with its DNA, donating penicillin-resistance genes and sometimes many other genes associated with antibiotic resistance, virulence and cell adherence to many genotypically diverse pneumococci. In particular, we describe two strains in which up to 10% of the PMEN1 genome was acquired in multiple fragments, some as long as 32 kb, distributed around the recipient genomes. This type of directional genetic promiscuity from a single clone to numerous unrelated clones has, to our knowledge, never before been described. Conclusions: These findings suggest that PMEN1 is a paradigm of genetic success both through its epidemiology and promiscuity. These findings also challenge the existing views about horizontal gene transfer among pneumococci.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec620929
dc.identifier.issn1474-7596
dc.identifier.pmid23158461
dc.identifier.urihttps://hdl.handle.net/2445/126121
dc.language.isoeng
dc.publisherBioMed Central
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1186/gb-2012-13-11-r103
dc.relation.ispartofGenome Biology, 2012, vol. 13, num. 11, p. R103
dc.relation.urihttps://doi.org/10.1186/gb-2012-13-11-r103
dc.rightscc-by (c) Wyres, Kelly L. et al., 2012
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Patologia i Terapèutica Experimental)
dc.subject.classificationPneumococs
dc.subject.classificationGenètica bacteriana
dc.subject.classificationResistència als medicaments
dc.subject.classificationAntibiòtics
dc.subject.otherStreptococcus pneumonia
dc.subject.otherBacterial genetics
dc.subject.otherDrug resistance
dc.subject.otherAntibiotics
dc.titleThe multidrug-resistant PMEN1 pneumococcus is a paradigm for genetic success
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
620929.pdf
Mida:
1022.57 KB
Format:
Adobe Portable Document Format