Minimal discrepancy points on the sphere

dc.contributor.advisorMarzo Sánchez, Jordi
dc.contributor.authorRibera Baraut, Pol
dc.date.accessioned2020-05-07T08:15:58Z
dc.date.available2020-05-07T08:15:58Z
dc.date.issued2019-06-28
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Director: Jordi Marzo Sánchezca
dc.description.abstract[en] Let $\mathbb{S}^{k}=\left\{x \in \mathbb{R}^{k+1} ;\|x\|=1\right\}$ be the unit sphere in $\mathbb{R}^{k+1}$ and consider the normalized surface area measure $\sigma^{*}$. It is well known that a set of $n$ points $x_{1}, \ldots, x_{n} \in \mathbb{S}^{k}$ is asymptotically uniformly distributed, i.e., the probability measure $\frac{1}{n} \sum_{j=1}^{n} \delta_{x_{j}}$ converges in the weak- $^{*}$ topology to $\sigma^{*},$ if and only if the spherical cap discrepancy of the set $P=\left\{x_{1}, \ldots, x_{n}\right\},$ defined as \[ \mathbb{D}_{n}(P)=\sup _{C(x, t) \subset S^{k}}\left|\operatorname{card}(P \cap C(x, t))-n \sigma^{*}(C(x, t))\right| \] where \[ C(x, t)=\left\{y \in \mathbb{S}^{k} ;\langle x, y\rangle \leq t\right\} \] is a spherical cap on $\mathbb{S}^{k}$ with $x \in \mathbb{S}^{k}$ and $-1 \leq t \leq 1,$ converges to zero when $n \rightarrow \infty$ It is therefore natural to consider the velocity of this convergence as a measure of the distribution of the sets $P$ In a couple of papers from $1984,$ J. Beck established the following results, which give the best bounds known up to now, [5,6]: - There exist $n$ -element sets of points $P \subset \mathbb{S}^{k}$ such that \[ \mathbb{D}_{n}(P) \lesssim n^{\frac{1}{2}-\frac{1}{2 k}} \sqrt{\log n} \] - For any $n$ -element set of points $P \subset \mathbb{S}^{k}$ \[ \mathbb{D}_{n}(P) \gtrsim n^{\frac{1}{2}-\frac{1}{2 k}} \] It is not known if any of these bounds is sharp. The lower bound uses Fourier analysis and the upper bound some random configurations in regular area partitions of the sphere. The main objective of this master thesis is to study J. Beck's work and the "almost tight" examples obtained through determinantal point processes [9].ca
dc.format.extent55 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/159077
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Pol Ribera Baraut, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada
dc.subject.classificationDistribució (Teoria de la probabilitat)cat
dc.subject.classificationProcessos puntualscat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherDistribution (Probability theory)eng
dc.subject.otherPoint processeseng
dc.subject.otherMaster's theseseng
dc.titleMinimal discrepancy points on the sphereca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
159077.pdf
Mida:
516.79 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria