Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Benavent et al., 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/221676

Artificial intelligence to predict treatment response in rheumatoid arthritis and spondyloarthritis: a scoping review

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

To analyse the types and applications of artificial intelligence (AI) technologies to predict treatment response in rheumatoid arthritis (RA) and spondyloarthritis (SpA). A comprehensive search in Medline, Embase, and Cochrane databases (up to August 2024) identified studies using AI to predict treatment response in RA and SpA. Data on study design, AI methodologies, data sources, and outcomes were extracted and synthesized. Findings were summarized descriptively. Of the 4257 articles identified, 89 studies met the inclusion criteria (74 on RA, 7 on SpA, 4 on Psoriatic Arthritis and 4 a mix of them). AI models primarily employed supervised machine learning techniques (e.g., random forests, support vector machines), unsupervised clustering, and deep learning. Data sources included electronic medical records, clinical biomarkers, genetic and proteomic data, and imaging. Predictive performance varied by methodology, with accuracy ranging from 60 to 70% and AUC values between 0.63 and 0.92. Multi-omics approaches and imaging-based models showed promising results in predicting responses to biologic DMARDs and JAK inhibitors but methodological heterogeneity limited generalizability. AI technologies exhibit substantial potential in predicting treatment responses in RA and SpA, enhancing personalized medicine. However, challenges such as methodological variability, data integration, and external validation remain. Future research should focus on refining AI models, ensuring their robustness across diverse patient populations, and facilitating their integration into clinical practice to optimize therapeutic decision-making in rheumatology.

Citació

Citació

BENAVENT, Diego, CARMONA ORTELLS, Loreto, GARCÍA LLORENTE, José francisco, MONTORO, Maria, RAMIREZ, Susan, OTÓN SÁNCHEZ, Teresa, LOZA, Estibaliz, GÓMEZ CENTENO, Antonio. Artificial intelligence to predict treatment response in rheumatoid arthritis and spondyloarthritis: a scoping review. _Rheumatology International_. 2025. Vol. 45, núm. 4. [consulta: 23 de gener de 2026]. ISSN: 1437-160X. [Disponible a: https://hdl.handle.net/2445/221676]

Exportar metadades

JSON - METS

Compartir registre