Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier, 2015
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/122433

Endogeneity and Panel Data in Growth Regressions: A Bayesian Model Averaging Approach

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Bayesian model averaging (BMA) has been successfully applied in the empirical growth literature as a way to overcome the sensitivity of results to different model specifications. In this paper, we develop a BMA technique to analyze panel data models with fixed effects that differ in the set of instruments, exogeneity restrictions, or the set of explanatory variables in the regression. The large model space that typically arises can be effectively analyzed using a Markov Chain Monte Carlo algorithm. We apply our technique to investigate the effect of foreign aid on per capita GDP growth. We show that BMA is an effective tool for the analysis of panel data growth regressions in cases where the number of models is large and results are sensitive to model assumptions.

Citació

Citació

LEÓN-GONZÁLEZ, Roberto, MONTOLIO, Daniel. Endogeneity and Panel Data in Growth Regressions: A Bayesian Model Averaging Approach. _Journal of Macroeconomics_. 2015. Vol. 46, núm. December, pàgs. 23-39. [consulta: 23 de gener de 2026]. ISSN: 0164-0704. [Disponible a: https://hdl.handle.net/2445/122433]

Exportar metadades

JSON - METS

Compartir registre