Aspectos teóricos e implementación del método iterativo GMRES para la resolución de sistemas lineales

dc.contributor.advisorVieiro Yanes, Arturo
dc.contributor.authorDorado Ladera, José Luis
dc.date.accessioned2018-10-29T11:22:15Z
dc.date.available2018-10-29T11:22:15Z
dc.date.issued2018-06-27
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: ArturoVieiro Yanesca
dc.description.abstract[en] In this work we study different theoretical aspects of the GMRES algorithm (Generalized Minimal RESidual), including the use of Krylov subspaces, general results on convergence and the adapted version with restarted GMRES(m). GMRES is an iterative method that approximates the solution of a linear system $Ax = b$ by looking for the solution that minimizes the residue within the Krylov subspace. This method can be applied to general linear systems, because it does not require an specific structure of the matrix $A$ of the system. It is especially suitable for system of high dimension when it is not possible to solve it by direct methods and when the classical iterative methods like Jacobi, Gauss-Seidel or SOR do not converge or do not converge in a reasonable amount of time. We complement the work with several remarks and pseudo-code schemes useful for the implementation (in C language) that we have done of the method. We use our own implementation of GMRES in several examples, improving the implementation until we reach the final version (included in the Appendix). In the memory we present some examples to illustrate some aspects of the convergence of GMRES for different spectra of $A$.ca
dc.format.extent61 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/125692
dc.language.isospaca
dc.rightscc-by-nc-nd (c) José Luis Dorado Ladera, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationMètodes iteratius (Matemàtica)ca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationÀlgebra linealca
dc.subject.classificationAlgorismes computacionalsca
dc.subject.classificationC++ (Llenguatge de programació)ca
dc.subject.otherIterative methods (Mathematics)en
dc.subject.otherBachelor's theses
dc.subject.otherLinear algebraen
dc.subject.otherComputer algorithmsen
dc.subject.otherC++ (Computer program language)en
dc.titleAspectos teóricos e implementación del método iterativo GMRES para la resolución de sistemas linealesca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
5.78 KB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
597.93 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria