Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Aguirre, Josu et al., 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/202079

Choosing Variant Interpretation Tools for Clinical Applications: Context Matters

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Pathogenicity predictors are computational tools that classify genetic variants as benign or pathogenic; this is currently a major challenge in genomic medicine. With more than fifty such predictors available, selecting the most suitable tool for clinical applications like genetic screening, molecular diagnostics, and companion diagnostics has become increasingly challenging. To address this issue, we have developed a cost-based framework that naturally considers the various components of the problem. This framework encodes clinical scenarios using a minimal set of parameters and treats pathogenicity predictors as rejection classifiers, a common practice in clinical applications where low-confidence predictions are routinely rejected. We illustrate our approach in four examples where we compare different numbers of pathogenicity predictors for missense variants. Our results show that no single predictor is optimal for all clinical scenarios and that considering rejection yields a different perspective on classifiers.

Citació

Citació

AGUIRRE, Josu, PADILLA, Natàlia, ÖZKAN, Selen, RIERA, Casandra, FELIUBADALÓ, Lídia, CRUZ, Xavier de la. Choosing Variant Interpretation Tools for Clinical Applications: Context Matters. _International Journal of Molecular Sciences_. 2023. Vol. 24, núm. 14. [consulta: 20 de gener de 2026]. ISSN: 1422-0067. [Disponible a: https://hdl.handle.net/2445/202079]

Exportar metadades

JSON - METS

Compartir registre